

Public 1(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2020 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Adobe AIR SDK Release Notes

Version 33.1.1.190
Date 10 July 2020
Document ID HCS19-000287
Owner Andrew Frost

Public 2(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2020 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Table of contents

1 Purpose of the Release ... 3

2 Release Information .. 4
2.1 Delivery Method ... 4
2.2 The Content of the Release ... 4
2.3 AIR for Flex users .. 5

3 Changes and Issues .. 6
3.1 Changes in this Release .. 6
3.2 Known Problems ... 6
3.3 Previous Changes ... 7

4 Updating tools/IDEs to support 64-bit ARM 12
4.1 AIR Developer Tool ... 12
4.2 ADT Architecture Configuration ... 12
4.3 Flash Builder ... 12
4.4 Adobe Animate .. 12
4.5 FlashDevelop .. 13
4.6 Moonshine ... 13
4.7 IntelliJ IDEA ... 13
4.8 FDT ... 14
4.9 Visual Studio Code .. 14

5 Configuration File .. 15

6 Android Applications – Play Store Uploads 16

7 Android App Bundle .. 17

8 Windows builds ... 18

9 MacOS builds ... 18

10 iOS support .. 18

11 Splash Screens .. 19
11.1 Desktop (Windows/macOS) .. 19
11.2 Android .. 19
11.3 iOS .. 19

12 ActionScript API Updates ... 20

Public 3(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2020 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

1 Purpose of the Release
This is an official release of the Adobe AIR SDK software, provided by HARMAN under the terms of the “AIR
SDK License Agreement”. This software may be used to create AIR applications for distribution to end users.

This version builds upon 33.1.1.176 which was withdrawn due to problems – primarily on MacOS – caused
by incorrect signing of executable files. A number of other fixes have been brought into this release, in
particular:

- Ensuring applications can create a new Encrypted Local Store on Windows platforms

- Preventing an iOS application running in the background due to proximity sensing from being
spuriously hung following an unexpected OS message

- Refining the splash screen detection mechanism on Android

The issues that had been caused by incorrectly code-signing the MacOS binaries included the inability to
use the device-specific functionality (such as listing devices and installing applications onto devices), as well
as the ahead-of-time compilation of ActionScript when creating an IPA file.

There are a number of key issues still outstanding that are now being worked on, see section 3.2.

Any issues found with the SDK should be reported to adobe.support@harman.com or raised on
https://github.com/Gamua/Adobe-Runtime-Support/issues.

The website for AIR SDK is available at: https://airsdk.harman.com.

mailto:adobe.support@harman.com
https://github.com/Gamua/Adobe-Runtime-Support/issues
https://airsdk.harman.com/

Public 4(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2020 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

2 Release Information
2.1 Delivery Method

This release shall be delivered via the AIR SDK website: https://airsdk.harman.com/download

2.2 The Content of the Release

2.2.1 Detailed SW Content of the Release

Name Version

Adobe AIR SDK – for Windows 33.1.1.190

Adobe AIR SDK – for Mac 33.1.1.190

Adobe AIR SDK for Flex Developers – for Windows 33.1.1.190

Adobe AIR SDK for Flex Developers – for Mac 33.1.1.190

2.2.2 Delivered Documentation

Title Document Number Version

Adobe AIR SDK Release Notes HCS19-000287 33.1.1.190

2.2.3 Build Environment

Platform Build Details

Android Target SDK Version: 28

Minimum SDK Version: 14 (ARMv7, x86); 21 (ARMv8, x86_64)

Platform Tools: 28.0.3

Build Tools: 28.0.3

SDK Tools: 26.1.1

SDK Platform: Android-28

iOS iPhoneOS SDK Version: 13.2

iPhoneSimulator SDK Version: 13.2

XCode Version: 11.2.1

MacOS MacOS SDK Version: 10.12

XCode Version: 11.2.1

Windows Visual Studio Version: 14.0.25431.01 Update 3

https://airsdk.harman.com/download

Public 5(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2020 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

2.3 AIR for Flex users

HARMAN have continued Adobe’s strategy of issuing two AIR SDKs per platform: the first of these
(“AIRSDK_[os].zip”) contains the newer ActionScript compiler and is a full, self-contained SDK for
compiling and packaging AIR applications. The second of these is for combination with the Flex SDK
(“AIRSDK_Flex_[os].zip”) which doesn’t include a number of the files necessary for ActionScript/MXML
compilation. These SDKs should be extracted over the top of an existing, valid Flex SDK.

See instructions at https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-air-sdk-flex-sdk.html.

NOTE when copying an AIR 33.1 SDK over a previous version, there are folders in AIR 33.1 that have the
same name as files from previous versions of the SDK (MainWindow.nib and MainWindow-iPad.nib). If there
are errors such as

“SDK is missing file objects-13.0+.nib”
then please check that these folders have been properly copied over and contain the objects-13.0+.nib file.

Advance warning: a later version of XCode has reverted this change in format so the same problem may
occur in a future release of AIR..

https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-air-sdk-flex-sdk.html

Public 6(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2020 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

3 Changes and Issues
3.1 Changes in this Release

3.1.1 Runtime

No changes – the below details will be fixed for all “33.1” version numbers:

Namespace: 33.1

SWF version: 44

The namespace and SWF version updates are made across all platforms and may be used to access the
updated ActionScript APIs that will be introduced in future beta releases of 33.1.

Note that using “33.0” as a namespace is not valid, and is resulting in behaviors such as VerifyErrors being
dispatched at application start-up with built-in class names such as ExtensionContext, Context3D, and others.

3.1.2 Build Tools

No changes.

3.1.3 AS3 APIs

No changes in this release.

The APIs for flash.geom.* are described in section 12.

3.1.4 Features

None

3.1.5 Bug Fixes

Gamua-371: IPA won't compile with 33.1.1.176 when Fast Packaging is off

Gamua-374: iOS Device not found AIR 33.1.1.176

Gamua-375: java.lang.NullPointerException - AppEntry.dispatchKeyEvent

Gamua-377: WARNING: Unlicensed version of AIR SDK

Gamua 378: Unable to build iOS ipa File with 33.1.1.176

AIR-282: Proximity on IOS blocks event processing when enabled

AIR-568: Encrypted local store - can't create new ELS on Windows (Gamua-205)

3.2 Known Problems

One key area where there are currently major issues is around multimedia, particularly the support (or lack of
support) for H.264 and AAC formats on desktop platforms. We intend to address these with a goal to release
a version supporting these prior to the end of the year.

We are also aware of a problem with Android SDK level 29 on 32-bit Android builds where the security
changes mean that one of the Neon detection optimisations is no longer permitted. This will be addressed
shortly along with a number of other updates that are already in progress.

Public 7(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2020 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Some Android resource packaging problems have been found to be caused by the code within ADT that
generates the R.class files from resources embedded in ANEs. Normally the generation would be done via
the JDK, but if this isn’t present on a computer (i.e. if JAVA_HOME isn’t set to a JDK folder) then ADT
attempts to generate the Java bytecode instead. See Gamua-274.

For a list of open issues, see https://github.com/Gamua/Adobe-Runtime-Support/issues

3.3 Previous Changes

3.3.1 AIR 33.1.1.176

AIR-256/Gamua-1: Removing allocation of strings when getting a vector type

AIR-269: Moving SQLite into namespace to avoid OS conflicts (Gamua-218)

AIR-328: Implementation of ELS for Windows + MacOS (Gamua-205)

AIR-349: Ensuring ADT can install onto new simulator devices (see Gamua-201)

AIR-359: Updating ADT to use the normal ‘ld’ command on macOS for linking (see Gamua-113)

AIR-428 Moving iOS splash screen into a Storyboard (see Gamua-333)

AIR-483/Gamua-331: ensuring iOS apps with non-ascii names don’t end up with bad filename

AIR-495: Fixing crash when large number of files are chosen in Windows file browser dialog

Gamua-287: Installer on MacOS now copes with iPhone XR and the newer UDID format.

Gamua-320: Fixing crash when enumerating cameras with Logitech driver

Gamua-338: Updating splash images to avoid crash on launch in Pixel XL devices

Gamua-349: Fix for Chinese-Traditional language code on iOS

Fix for crash in iOS audio disconnection

3.3.2 AIR 33.1.1.98

Gamua-240: Ensuring 'activate' event is sent at startup on Windows after splash screen

Gamua-283: Fixing issue with iOS device installation log confusing IDEs

Gamua-285: Preventing splash screen from distorting on Android

Gamua-285: Preventing splash screen from remaining on the display when debugging

Gamua-286: Partial fix: ensuring AS3 functions don't crash due to ByteArray length sychronisation

Gamua-287: Ensuring we only report real errors from libimobiledevice installation

Gamua-287: Reformatting iIPA output so that it can be parsed by Animate

Gamua-287: Ensuring iIPA.exe works with Flash Builder on Windows

3.3.3 AIR 33.1.1.86

AIR-282: Ensuring proximity sensor doesn't completely block the AIR process when enabled (Gamua-138)

AIR-380: Fixing crash when using AECM microphone on Android ARMv7 (Gamua-226)

AIR-388: Crash in iOS AOT builds due to flash.geom.Transform API update (Gamua-270)

AIR-394: Reverting fix for AIR-168 to avoid context recreating when bringing app to foreground (Gamua-256)

AIR-395: Fix for remote notification event token format in iOS 13.0 (Gamua-263)

https://github.com/Gamua/Adobe-Runtime-Support/issues/274
https://github.com/Gamua/Adobe-Runtime-Support/issues

Public 8(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2020 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

AIR-397: Adding synchronization to cache access in Android app directory manager (potential improvement
for Gamua-167)

Gamua-112: Enhancing iIPA tool and device connectivity mechanisms

Gamua-240: 33.1.1.50 on Windows 10 only splash screen is displayed and black screen.

Gamua-258: AIR 33.1.1.63 - iOS - Immediately crashing on startup

Gamua-259: [Android IOS] AIR SDK 33.1.1.63 when use ANE crashing on startup

Gamua-269: App area scaled completely wrong on ios.

Gamua-277: [Android iOS][33.1.1.63]Display size

3.3.4 AIR 33.1.1.63

AIR-313: Object pooling for geometry APIs – adjusted how these are defined

AIR-379: Problems with AIR 33.1 launch including black screen, invalid splash screen display, crash after
short duration (Gamua-240, Gamua-249, Gamua-231)

3.3.5 AIR 33.1.1.50

AIR-354: Crash when changing orientation in background (Gamua-230)

Gamua-231: Splash screen appears even on commercially licensed SDKs

Gamua-234: Packaging tvOS applications failure

3.3.6 AIR 33.1.0.43

AIR-310: Remove Stage3D resource limits for apps using namespace 33.1

AIR-313: Object pooling for geometry APIs

Gamua-227: Crash in loading SWF with embedded resources

3.3.7 AIR 33.1.0.37

AIR-168: AIR content goes all white/blank after AR camera closes (Gamua-67)

AIR-210: Splash screen improvements [pending on iOS]

AIR-263: iIPA process cannot uninstall an application from iOS13

AIR-296: Yet another fix to protect from crash in audio code on Android

AIR-308: Wrap up libimobiledevice for installation on iOS (Gamua-112)

AIR-346: Problems with Android 32-bit ANE development on SDK 33 (Gamua-217)

3.3.8 AIR 33.1.0.16

AIR-296: Adding further fix to protect from crash in audio code

AIR-300: Preventing hang when switching Wi-Fi connection when RTMFP is being used in a Worker
(Gamua-96)

AIR-311: Fixing handling of invalid data passed to Font.registerFont() (Gamua-153)

AIR-312: Trying to protect against java.lang.NullPointerException on Android 9 (Gamua-70)

Public 9(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2020 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

3.3.9 AIR 33.0.2.338

AIR-304: Correcting detection of Catalina OS version

3.3.10 AIR 33.0.2.330

AIR-276: Updating skia used in x64 build to support fonts properly

AIR-283: Updating netstream handling to force a correct seek to start of a file (Gamua-79)

AIR-296: Fixing crash in Android audio mixer due to buffer size/data mismatch

AIR-298: Fixing crash in AIR relating to display objects in stopAllMovieClips

AIR-299: Fixing wrong stage resolution reported after splash screen has been displayed (Gamua-135)

AIR-301: Ensuring we don't have a Java exception if the app is closed during the splash screen (Gamua-
157)

AIR-304: Updating IPA packaging to choose between universal 32- and 64- bit, vs 64-bit only on Catalina

AIR-307: Ensuring we cope with a license file in a read-only state

3.3.11 AIR 33.0.2.315

AIR-137: Crash in AIR runtime during requestPermission call

AIR-169: Android App Bundle support – see section 7 for details and limitations.

AIR-265: Crash with null function pointer when trying to pause audio stream

AIR-266: Ensuring output progress messages aren't blocked and async large file writing completes (Gamua-
134)

AIR-267: Ensuring local URLs are correctly converted on Windows for Trusted Folder settings

AIR-268: Preventing URLLoader from reading bytes from a URLStream that has been closed already
(Gamua-127)

AIR-274: ADT does not recognise new Apple certificates as being production ones (Gamua-137)

AIR-275: Reverting IPA generation to ensure we package both ARMv7 and ARMv8 versions (Gamua-142)

AIR-277: Italic textField cuts off by autoSize property (Gamua-78)

AIR-278: AIR support for Android x86_64 targets

AIR-284: Fixing crash in attachNetStream when the video plane is not on a view (Gamua-146)

3.3.12 AIR 33.0.2.288

AIR-135: Fixing crash in bitmap rendering following corrupt bitmap handling

AIR-250: Ensuring that ADT can still work with Java 7 runtime (as long as minSdkVersion < 26)

AIR-262: Crash in ARMv7 when rendering a bitmap, background thread calls null function pointer

3.3.13 AIR 33.0.2.281

AIR-173: Version/ABI information being output to the Android logcat upon start-up

Public 10(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2020 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

AIR-199: Adding support for Java 8 features for Android extensions (Gamua-84)

AIR-205: Ensuring multidex support works for older Android devices (Gamua-102)

AIR-206: Fixing nanojit bug that was causing a crash with illegal opcode

AIR-211: New ”-license” option within ADT so that users can check their license status

AIR-221: Ensuring we use '/' notation for package/class to avoid crash-on-start-up problems on some
devices (Gamua-1117)

AIR-231: Fixing crash in ADT if the license file has expired and improving the license check process

AIR-236: Improvements in stability within the JIT compiler for armv8

AIR-242: Updating iIPA tool to ensure packages can be installed onto iOS 13 devices [didn’t work]

AIR-246: Fixing StringOutOfBounds exception in getHardwareInfo

AIR-249: Fixing crash in Android audio loop creation due to race condition

AIR-251: Fixing crash in sha1_block_data_order by updating openssl for armv8

3.3.14 AIR 33.0.2.246

AIR-196: Generated license certificate files can be malformed

AIR-198: Add ability to control whether ADT prepends ”air.” to the Android Application ID

AIR-200: Analytics feature to provide information on platforms/tools used when packaging apps

AIR-201: Licensing feature to periodically confirm validity and update the license file

AIR-203: Drawing a video before Netstream starts to play causes a crash (Gamua-98)

AIR-204: Read “position” property of the async opened FileStream causes hang (Gamua-97)

3.3.15 AIR 33.0.1.228

AIR-190: AIR SDK scripts on MacOS don’t cope with the SDK path containing a space

AIR-192: Black screen when starting AIR (free tier) on older Android versions

3.3.16 AIR 33.0.1.220

AIR-112, Gamua-58: Update ADT so that it doesn’t compress certain file types (see
’UncompressedExtensions’ config file setting in section 5)

AIR-181: Android ‘back’ button cannot be handled in ActionScript (Gamua-73)

AIR-184: Camera is not working with ARMv8 binary (Gamua-72)

AIR-186: Camera hangs when video.attachCamera(null) is called in frame handler (Gamua-54)

3.3.17 AIR 33.0.0.212

HARMAN Ref AIR-159: Soft keyboard not appearing when an input text field has focus

HARMAN Ref AIR-160: Config file doesn’t take effect unless “DebugOut” setting is present

HARMAN Ref AIR-161: ADT packaging of ANEs doesn’t handle the use of a config file to override the
architecture

Public 11(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2020 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

3.3.18 AIR 33.0.0.182

ADOBE Ref AIR-4198749: AIR crashes on latest Anrdoid Q Preview

HARMAN Ref AIR-144: Performance hit on 64-bit ARM Android runtime

HARMAN Ref AIR-149: AIR SDK cannot package an app with google_play_services included in the manifest

HARMAN Ref AIR-153: Swf-Version built from Adobe Animate is set to 44 and does not work with ADL

HARMAN Ref AIR-156: ADT copyright output is affecting IDEA integration

HARMAN Ref AIR-157: Cannot export release build from FB on second attempt

HARMAN Ref AIR-158: AIR SDK package failures due to incorrect target SDK version

GAMUA Ref #55: Including Support-v4 28.0.0.ANE results in compile error

3.3.19 AIR 33.0.0.175

HARMAN Ref AIR-138: ADT shouldn’t compress raw/binary files when creating APK

HARMAN Ref AIR-139: ADT needs a mechanism to set the default target architecture

HARMAN Ref AIR-140: Building with new airglobal.swc file fails

HARMAN Ref AIR-142: air-sdk-description.xml isn’t updated

HARMAN Ref AIR-143: ADT -version should only print the version and not the copyright notice

HARMAN Ref AIR-145: Crash in AIR runtime on ARMv7 builds

HARMAN Ref AIR-146: ADT should use “armv8” for consistency

HARMAN Ref AIR-151: ADT doesn’t work with Java 8: dx tool failed

3.3.20 AIR 33.0.0.168

Adobe Ref AIR-4198789: 64-bit ARM support for Android.

Adobe Ref AIR-4198749: Text relocations on Android Q

HARMAN Ref AIR-82: System.Capabilities.supports64BitProcesses incorrect with 64-bit AIR builds

HARMAN Ref AIR-96: Remove reliance on deprecated “MODE_WORLD_READABLE” flag

Public 12(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2020 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

4 Updating tools/IDEs to support 64-bit ARM
4.1 AIR Developer Tool

To package an android application with the armv8 binary, the "-arch armv8" option must be used on the ADT
command line. By default, the packager will use armv7 unless a configuration file is provided – see below.

4.2 ADT Architecture Configuration

The default architecture used by ADT can be adjusted via the configuration file as described in section 5.

For example, to ensure that the packages created by ADT will always embed the 64-bit runtime, the
configuration file should contain:
DefaultArch=armv8
OverrideArch=armv8

Using this configuration file, a developer can package their applications for ARMv8 targets using existing
versions of Adobe Animate, FDT etc.

4.3 Flash Builder

The new AIR SDK should be updated using standard instructions found on Adobe's forums:

https://helpx.adobe.com/uk/flash-builder/kb/overlay-air-sdk-flash-builder.html

or for updating the Flex SDK: https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-air-sdk-flex-sdk.html

If you find an issue with the AS3 not compiling, this can be addressed by
https://forums.adobe.com/thread/1483159

Exporting a release build must be set to use the captive runtime.

To update the architecture, open the Project Properties and expand the ActionScript Build Packaging item to
select "Google Android"

Click on "Customize Launch", "Add Parameter..." and give a name of "-arch" and value "armv8". Place this
after the "-target" option.

Please note that AIR SDK now requires Java version 8, in line with Google’s requirements for the latest
Android build tools, and that Flash Builder’s internal JRE needs to be updated accordingly: please see
http://blogs.adobe.com/flashplayer/2018/02/running-adobe-flash-builder-on-mac-with-java-78.html

Also please note an issue which may cause problems when adding “-arch armv8” (or “-arch x86”) to the
launch parameters: https://forums.adobe.com/thread/1505072

4.4 Adobe Animate

To add support for the new AIR SDK, use the “Help | Manage Adobe AIR SDK…” option from Animate. Click
on the “+” icon and select the folder into which you have extracted the SDK. This should show in the list of
SDKs with the correct version number.

Animate 20.0 includes support for ARMv8 in the UI now; however, the configuration file mechanism can still
be used to generate x86_64-based APKs or for users of older versions of Animate.

https://helpx.adobe.com/uk/flash-builder/kb/overlay-air-sdk-flash-builder.html
https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-air-sdk-flex-sdk.html
https://forums.adobe.com/thread/1483159
http://blogs.adobe.com/flashplayer/2018/02/running-adobe-flash-builder-on-mac-with-java-78.html
https://forums.adobe.com/thread/1505072

Public 13(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2020 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

4.5 FlashDevelop

The packaging script asks the user which option to use for creating a mobile package (Android/iOS etc) but
there is no way currently in this to specify an architecture (even for x86).

An extra section can be added to the "Packager.bat" script that will allow the user to be queried on the target
ABI to be used in the package. The "Packager.bat" script can then be provided into FlashDevelop's project
folder so that this is used for all new projects:

 FlashDevelop\Projects\190 ActionScript 3 - AIR Mobile AS3 App\bat\Packager.bat

The extra choice needs to be added within the "android-config" section, prior to the "goto start" command:
:: which architecture?
echo.
echo Please select your target architecture for Android:
echo.
echo [1] armv7 ^(32-bit ARM devices^)
echo [2] x86 ^(Intel products^)
echo [3] armv8 ^(64-bit ARM devices^)
echo.
set /P ARCH=[Choice:]
echo.
if "%ARCH%"=="1" set OPTIONS=%OPTIONS% -arch armv7
if "%ARCH%"=="2" set OPTIONS=%OPTIONS% -arch x86
if "%ARCH%"=="3" set OPTIONS=%OPTIONS% -arch armv8

4.6 Moonshine

Moonshine has a build.xml file which is used to call the ADT packaging tool:
 <target name="compileAPKProject" depends="compileSWF">
 <java jar="${ADT_PATH}" fork="true" failonerror="true">
 <arg line="-package" />
 <arg line="-target apk-captive-runtime"/>
 ..
 <arg line="${SWF_FILE_PATH}" />
 <!-- Add folders to be bundled in the AIR file here -->
 </java>
 </target>

An additional 'arg' can be added in order to select the ABI:

<arg line="-arch armv8" />

4.7 IntelliJ IDEA

The new SDK should be incorporated into IntelliJ IDEA using the standard process documented at:
https://www.jetbrains.com/help/idea/preparing-for-actionscript-flex-or-air-application-development.html

To build and package the application for the armv8 architecture, an option is being provided in the latest
release of IDEA. This update to the “Package AIR Application Dialog” will now give the user the full set of
target architecture options.

https://www.jetbrains.com/help/idea/preparing-for-actionscript-flex-or-air-application-development.html

Public 14(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2020 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

4.8 FDT

With FDT currently the same mechanism should be used as for Adobe Animate, with a configuration file
being used to force a target architecture.

Please note that new applications created using FDT will pick up an incorrect namespace, and the
application descriptor file needs to be manually changed back to 32.0.

4.9 Visual Studio Code

asconfig.json already supports android packaging options including the "arch" value. For targeting
armv8, this needs to be updated:
"airOptions": {
 "android": {
 "arch": "armv8"
 }
}

See https://github.com/BowlerHatLLC/vscode-as3mxml/wiki/asconfig.json#android-options

https://github.com/BowlerHatLLC/vscode-as3mxml/wiki/asconfig.json#android-options

Public 15(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2020 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

5 Configuration File
ADT uses an optional configuration file to change some of its behaviour. To create a configuration file (there
is not one by default within the SDK), create a new text file and save this with the name “adt.cfg” in the
SDK’s “lib” folder (i.e. alongside the ‘adt.jar’ file). The configuration file is in the standard ‘ini file’ format with
separate lines for each option, written as “setting=value”.

Current options are listed below:

Setting Explanation

DefaultArch Used as a default architecture if there is no “-arch” parameter provided to
ADT.

Values may be ‘armv8’, ‘armv8’, ‘x86’ or ‘x64’.

OverrideArch Used where an architecture value is being provided to ADT using the ‘-arch’
parameter, this configuration setting will override such parameter with the
value given here.

Values may be ‘armv8’, ‘armv8’, ‘x86’ or ‘x64’.

DebugOut If set to “true”, results in additional output being generated into a local file
which can aid in debugging problems within ADT (including the use of third
party tools from the Android SDK).

Values may be ‘true’ or ‘false’, default is ‘false’.

UncompressedExtensions A comma-separated list of file extensions that should not be compressed
when such files are found in the list of assets to be packaged into the APK
file.

For example: “UncompressedExtensions=jpg,wav”

AddAirToAppID Configures whether or not the “air.” prefix is added to an application’s ID
when it is packaged into the APK.

Values may be ‘true’ or ‘false’, default is ‘true’.

Public 16(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2020 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

6 Android Applications – Play Store Uploads
New applications now need to have a 64-bit version of native code as well as a 32-bit version, as per the
blog post from Google:

https://android-developers.googleblog.com/2019/01/get-your-apps-ready-for-64-bit.html

Currently the main mechanism used by the AIR SDK is to generate multiple APK files, one for each of the
required ABIs. Experimental support for the Android App Bundle format is available from release 33.0.2.315,
please see section 7 for more details.

The guidelines and requirements for the use of multiple APK files can be found at:

https://developer.android.com/google/play/publishing/multiple-apks

Please note in particular the following requirement:

Each APK must have a different version code, specified by the android:versionCode attribute

Currently the ADT packaging tool will generate the android:versionCode attribute based on the version
number provided in your AIR Application Descriptor File (which is generated by the likes of Adobe Animate
from within the version given in the target settings, i.e. “AIR for Android Settings” dialog box). In the XML-
based application descriptor, this is the “versionNumber” value.

The version is a dot-separated series of up to three numbers, for example “10.2” or “15.123.5”. Internally this
is translated into the android:versionCode value by splitting the numbers into millions, thousands, and
units (if there are less than three parts to the version number, these are assumed to be zero, i.e. “10.2” is the
equivalent of “10.2.0”).

Hence “10.2” will become 10 million 2 thousand, 10002000; “15.123.5” will become 15 million 123 thousand
and 5, 15123005.

To create a set of APKs that can be uploaded to the Play Store that will cover both 32-bit and 64-bit ARM
devices, a developer would therefore need to create two APK files using two different version numbers. Due
to the way in which the Play Store determines which APK to serve to which customer, the 64-bit version
needs to be at the higher version level (because the 32-bit version could also run on a 64-bit OS, so if that
had a higher version then it would completely overshadow the 64-bit APK).

The workflow should therefore be:

1) Create a first APK file for 32-bit ARM (armv7)
2) Update the version number by as small as increment as possible
3) Create a second APK file for 64-bit ARM (armv8)
4) Upload both APK files to the Play Store.

The same process can be applied to x86/x86_64 binaries, with the x86_64 version requiring a higher version
code and both of these would need to be different from the versions used by the ARM-based APKs.

Using multiple APK files will still result in a warning about the lack of use of the Android App Bundle, and the
resulting inefficiencies, but this can be ignored.

https://android-developers.googleblog.com/2019/01/get-your-apps-ready-for-64-bit.html
https://developer.android.com/google/play/publishing/multiple-apks
https://developer.android.com/guide/topics/manifest/manifest-element.html#vcode

Public 17(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2020 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

7 Android App Bundle
Google introduced a new format for packaging up the necessary files and resources for an application
intended for uploading to the Play Store, called the Android App Bundle. Information on this can be found at
https://developer.android.com/guide/app-bundle

AIR now supports this on an experimental basis, with the packaging of the libraries for each of the four
supported ABIs into the single AAB file. This uses a different resource packaging tool, “aapt2” as well as the
“bundletool2 utility which are now added to the AIR SDK (see license information for these under the
“lib/android/licenses” folder).

To generate an Android App Bundle file, the ADT syntax is similar to the “apk” usage:

adt -package -target aab <signing options> output.aab <app descriptor and files> [-extdir <folder>]

No “-arch” option can be provided, as the tool will automatically include all of the architecture types.

Note that the creation of an Android App Bundle involves a few steps and can take significantly longer than
creating an APK file. We recommend that APK generation is still used during development and testing, and
the AAB output can be used when packaging up an application for upload to the Play Store.

AAB files cannot be installed onto a handset: instead, an appropriate APK needs to be generated and
installed, which can be done via the “bundletool” utility. Instructions for this are available at
https://developer.android.com/studio/command-line/bundletool#deploy_with_bundletool, essentially the
below lines can be used:

java -jar bundletool.jar build-apks --bundle output.aab --output output.apks --connected-device

java -jar bundletool.jar install-apks --apks=output.apks

The first step generates an “apks” file which is a collection of different APK files that are appropriate for the
connected device; the second step then installs this onto a handset. Note that the APK generation here will
use a default/debug keystore; additional command-line parameters can be used if the output APK needs to
be signed with a particular certificate.

HARMAN is intending to add support for installation of an AAB file using a single ADT comment, to simplify
this process.

There are some limitations to the current implementation of the Android App Bundle within AIR SDK:

• The outputs used are solely the release build and do not contain debugging support: essentially it is
the equivalent of “apk-captive-runtime” rather than “apk-debug”. For debugging, please continue to
use “apk-debug”.

• AIR Native Extensions have a restriction regarding the use of Android resources that are packaged
along with them. ANEs that are purely native libraries (JAR/SO files) should work, however if one of
these attempts to load a resource e.g. a layout, this will fail. This issue is under investigation.

This final restriction means that the usefulness of Android App Bundles may be limited at present, however
we welcome any feedback from developers who are able to use the format.

https://developer.android.com/guide/app-bundle
https://developer.android.com/studio/command-line/bundletool#deploy_with_bundletool

Public 18(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2020 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

8 Windows builds
The SDK now includes support for Windows platforms, 32-bit and 64-bit. While there is no updated “shared
runtime” application that can be installed, developers should use the “bundle” option to create an output
folder that contains the target application. This needs to be packaged up using a third party installer
mechanism, in order to provide something that can be easily distributed to and installed by end users.
HARMAN are looking at adapting the previous AIR installer so that it would be possible for the AIR
Developer Tool to perform this step, i.e. allowing developers to create installation MSI files for Windows apps
in a single step.

Instructions for creating bundle packages are at:

https://help.adobe.com/en_US/air/build/WSfffb011ac560372f709e16db131e43659b9-8000.html

Note that 64-bit applications can be created using the “-arch x64” command-line option, to be added
following the “-target bundle” option.

9 MacOS builds
MacOS builds are provided only as 64-bit versions. A limited shared runtime option is being prepared so that
existing AIR applications can be used on Catalina, but the expectation for new/updated applications is to
also use the “bundle” option to distribute the runtime along with the application, as per the above Windows
section.

Note that Adobe’s AIR 32 SDK can be used on Catalina if the SDK is taken out of ‘quarantine’ status. For
instructions please see an online guide such as:

https://www.soccertutor.com/tacticsmanager/Resolve-Adobe-AIR-Error-on-MacOS-Catalina.pdf

10 iOS support
For deployment of AIR apps on iOS devices, the AIR Developer Tool will use the provided tools to extract
the ActionScript Byte Code from the SWF files, and compile this into machine code that is then linked with
the AIR runtime and embedded into the IPA file. The process of ahead-of-time compilation depends upon a
utility that has to run with the same processor address size as the target architecture: hence to generate a
32-bit output file, it needs to run a 32-bit compilation process. This causes a problem on MacOS Catalina
where 32-bit binaries will not run.

For this reason, it is not possible to create a universal binary (embedding both 32-bit and 64-bit ARM code)
using MacOS Catalina (10.15) or later. The tools will only run the 64-bit version and the IPA files will be
limited such that they only install onto 64-bit devices. To summarise the process/requirements:

- Using MacOS versions up to and including 10.14, an IPA will be created that contains a universal
binary with both 32-bit and 64-bit code in it. This can be installed onto older iOS devices that do not
support 64-bit, as well as newer devices.

- Using MacOS 10.15 upwards, with the restriction where we cannot run 32-bit executables, the IPA
file will only contain the 64-bit code. These IPA files can only be installed onto 64-bit devices; there is
an updated device requirements setting that is added automatically into the Info.plist file in this case.

- Using Windows, developers can continue to support 32-bit and 64-bit generation as before.

https://help.adobe.com/en_US/air/build/WSfffb011ac560372f709e16db131e43659b9-8000.html
https://www.soccertutor.com/tacticsmanager/Resolve-Adobe-AIR-Error-on-MacOS-Catalina.pdf

Public 19(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2020 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

11 Splash Screens
For our ‘free tier’ users, a splash screen is injected into the start-up of the AIR process, displaying the
HARMAN and AIR logos for around 2 seconds whilst the start-up continues in the background. There are
different mechanisms used for this on different platforms, the current systems are described below.

11.1 Desktop (Windows/macOS)

Splash screens are displayed in a separate window centred on the main display, while the start-up continues
behind these. The processing of ActionScript is delayed until after the splash screen has been removed.

11.2 Android

The splash screen is displayed during start-up and happens immediately the runtime library has been
loaded. After a slight delay the initial SWF file is loaded in and when processing for this starts, the splash
screen is removed.

11.3 iOS

The splash screen is implemented as a launch storyboard with the binary storyboard and related assets
included in the SDK. This has implications for those who are providing their own storyboards or images in an
Assets.car file:

- If you are on the ‘free tier’ then the AIR developer tool will ignore any launch storyboard you have
specified within your application descriptor file, or provided within the file set for packaging into the
IPA file.

- If you are creating an Assets.car file, then you need to add in the AIR splash images from the SDK
which are in the “lib/aot/res” folder. These should be copied and pasted into your “.xcassets” folder in
the Xcode project that you are using for creation of your assets.

Troubleshooting:

Message from ADT: “Warning: free tier version of AIR SDK will use the HARMAN launch
storyboard” – this will be displayed if a <UILaunchStoryboardName> tag has been added via the AIR
application descriptor file. The tag will be ignored and the Storyboard from the SDK will be used instead.

Message from ADT: “Warning: removing user-included storyboard "[name]"” will be displayed if
there was a Storyboardc file that had been included in the list of files to package: this will be removed.

Message from ADT: "Warning: free tier version of AIR SDK must use the HARMAN launch
storyboard" – this will be displayed if the Storyboardc file in the SDK has been replaced by a user-
generated one.

If a white screen is shown during start-up: check that the HARMAN splash images are included in your
assets.car file. Note that the runtime may shut down if it doesn’t detect the appropriate splash images.

The runtime may also shut down for customers with a commercial license if a storyboard has been specified
within the AIR descriptor file but not added via the list of files to package into the IPA file.

Public 20(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2019 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

12 ActionScript API Updates
Changes have been made to the AS3 APIs so the documentation hosted by Adobe is now out of date in the below cases. HARMAN will be taking over the
hosting of the AS3 documentation at some point during 2020 at which point we will update the online documentation and remove this section.

NOTE these APIs are further updated from the changes in AIR 33.1.1.50. The changes made there caused problems for classes that override any of these
functions – which meant that the Flex SDK no longer compiled, and existing Flex applications would not run on that version of the runtime.

The new approach is that the existing APIs are unchanged, instead a new set of APIs are provided as an addition. To access these APIs, SWF version 44 is
required. The parameter “output” can be used to pass in an object that should be operated on, rather than the runtime generating a new object for this. To
keep some similarities with the previous equivalent functions, these then return the ‘output’ object from the function.

Class API Updates

flash.geom.Matrix public function deltaTransformPointToOutput(point:Point, output:Point):Point
public function transformPointToOutput(point:Point, output:Point):Point

flash.geom.Matrix3D public function decomposeToOutput(orientationStyle:String = "eulerAngles",
output:Vector.<Vector3D> = null):Vector.<Vector3D>

public function transformVectorToOutput(v:Vector3D, output:Vector3D):Vector3D;

public function deltaTransformVectorToOutput(v:Vector3D, output:Vector3D):Vector3D;

public static function interpolateToOutput(thisMat:Matrix3D, toMat:Matrix3D, percent:Number,
output:Matrix3D):Matrix3D;

flash.geom.PerspectiveProjection public function toMatrix3DToOutput(output:Matrix3D):Matrix3D;

flash.geom.Point public static function interpolateToOutput(pt1:Point, pt2:Point, f:Number, output:Point):Point

public function subtractToOutput(v:Point, output:Point):Point

public function addToOutput(v:Point, output:Point):Point

public static function polarToOutput(len:Number, angle:Number, output:Point):Point

flash.geom.Rectangle public function intersectionToOutput(toIntersect:Rectangle, output:Rectangle):Rectangle

public function unionToOutput(toUnion:Rectangle, output:Rectangle):Rectangle

public function copyConcatenatedMatrixToOutput(output:Matrix):void;

Public 21(21)
ADOBE AIR SDK RELEASE NOTES Version 33.1.1.190

Copyright © 2019 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

flash.geom.Transform public function copyConcatenatedColorTransformToOutput(output:ColorTransform):void;

public function copyPixelBoundsToOutput(output:Rectangle):void;

public function getRelativeMatrix3DToOutput(relativeTo:DisplayObject, output:Matrix3D):Matrix3D;

public function copyPerspectiveProjectionToOutput(output:PerspectiveProjection):void;

flash.geom.Utils3D public static function projectVectorToOutput(m:Matrix3D, v:Vector3D, output:Vector3D):Vector3D;

public static function pointTowardsToOutput(percent:Number, mat:Matrix3D, pos:Vector3D,
at:Vector3D=null, up:Vector3D=null, output:Matrix3D=null):Matrix3D;

flash.geom.Vector3D public function crossProductToOutput(a:Vector3D, output:Vector3D):Vector3D

public function addToOutput(a:Vector3D, output:Vector3D):Vector3D

public function subtractToOutput(a:Vector3D, output:Vector3D):Vector3D

	1 Purpose of the Release
	2 Release Information
	2.1 Delivery Method
	2.2 The Content of the Release
	2.2.1 Detailed SW Content of the Release
	2.2.2 Delivered Documentation
	2.2.3 Build Environment

	2.3 AIR for Flex users

	3 Changes and Issues
	3.1 Changes in this Release
	3.1.1 Runtime
	3.1.2 Build Tools
	3.1.3 AS3 APIs
	3.1.4 Features
	3.1.5 Bug Fixes

	3.2 Known Problems
	3.3 Previous Changes
	3.3.1 AIR 33.1.1.176
	3.3.2 AIR 33.1.1.98
	3.3.3 AIR 33.1.1.86
	3.3.4 AIR 33.1.1.63
	3.3.5 AIR 33.1.1.50
	3.3.6 AIR 33.1.0.43
	3.3.7 AIR 33.1.0.37
	3.3.8 AIR 33.1.0.16
	3.3.9 AIR 33.0.2.338
	3.3.10 AIR 33.0.2.330
	3.3.11 AIR 33.0.2.315
	3.3.12 AIR 33.0.2.288
	3.3.13 AIR 33.0.2.281
	3.3.14 AIR 33.0.2.246
	3.3.15 AIR 33.0.1.228
	3.3.16 AIR 33.0.1.220
	3.3.17 AIR 33.0.0.212
	3.3.18 AIR 33.0.0.182
	3.3.19 AIR 33.0.0.175
	3.3.20 AIR 33.0.0.168

	4 Updating tools/IDEs to support 64-bit ARM
	4.1 AIR Developer Tool
	4.2 ADT Architecture Configuration
	4.3 Flash Builder
	4.4 Adobe Animate
	4.5 FlashDevelop
	4.6 Moonshine
	4.7 IntelliJ IDEA
	4.8 FDT
	4.9 Visual Studio Code

	5 Configuration File
	6 Android Applications – Play Store Uploads
	7 Android App Bundle
	8 Windows builds
	9 MacOS builds
	10 iOS support
	11 Splash Screens
	11.1 Desktop (Windows/macOS)
	11.2 Android
	11.3 iOS

	12 ActionScript API Updates

