

Public 1(18)
ADOBE AIR SDK RELEASE NOTES Version 50.2.1.1

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Adobe AIR SDK Release Notes

Version 50.2.1.1
Date 17 February 2023
Document ID HCS19-000287
Owner Andrew Frost

Public 2(18)
ADOBE AIR SDK RELEASE NOTES Version 50.2.1.1

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Table of contents
1 Release Overview ...3
1.1 Key changes ...3
1.2 Limitations ..3
1.3 Feedback ..3
1.4 Notes ..3

2 Release Information ...4
2.1 Delivery Method ...4
2.2 The Content of the Release ...4
2.3 AIR for Linux – Restrictions ...5
2.4 AIR for Flex users ..5

3 Summary of changes ...6
3.1 Runtime and namespace version ..6
3.2 Build Tools ..6
3.3 AS3 APIs ..6
3.4 Features ...6
3.5 Bug Fixes... 10

4 Android builds ... 13
4.1 AAB Target .. 13
4.2 Play Asset Delivery ... 13
4.3 Android Text Rendering .. 14

5 Windows builds ... 15

6 MacOS builds... 16

7 iOS support .. 17

8 Splash Screens ... 18
8.1 Desktop (Windows/macOS) .. 18
8.2 Android .. 18
8.3 iOS ... 18

Public 3(18)
ADOBE AIR SDK RELEASE NOTES Version 50.2.1.1

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

1 Release Overview
Release 50.2.1 of the AIR SDK is a namespace update i.e. new capabilities have been added into the
application descriptor file, requiring a new minor version update.

1.1 Key changes

There are a number of updates included in this release, including the renewal of support for the Apple
tvOS platform, and the ability to run the AIR ActionScript virtual machine in a background thread on
Android devices to try to eliminate ANR errors.

A few updates have also been made to how ANEs can be configured for Android dependencies, and
the APIs that are available for ByteArray manipulation.

For further information please see section 3.

1.2 Limitations

For macOS users on 10.15+, the SDK may not work properly unless the quarantine setting is
removed from the SDK: $ xattr -d -r com.apple.quarantine /path/to/SDK

Please note that there is no longer support for 32-bit IPA files, all IPAs will use just 64-bit binaries now
so older iPhones/iPads may not be supported.

Android development should now be performed with an installation of Android Studio and the SDK
and build tools, so that the new build mechanism (using Gradle and the Android Gradle Plug-in) can
use the same set-up as Android Studio.

1.3 Feedback

Any issues found with the SDK should be reported to adobe.support@harman.com or preferably
raised on https://github.com/airsdk/Adobe-Runtime-Support/issues.

The website for AIR SDK is available at: https://airsdk.harman.com with the developer portal available
under https://airsdk.dev

1.4 Notes

Contributors to the https://airsdk.dev website would be very welcomed: this portal is being built up as
the repository of knowledge for AIR and will be taking over from Adobe’s developer websites. At some
point the AS3 documentation will be migrated to this location and this can then be maintained directly
by HARMAN (and/or the community) rather than having AS3 API updates listed within these release
notes.

For developers who are packaging applications for desktop AIR, there is now a shared AIR runtime
that is available for end users to download at https://airsdk.harman.com/runtime. However, we
continue to recommend that applications are packaged up with the captive bundle mechanism to
include the runtime and remove the dependency upon this shared package.

On MacOS in particular, the use of the shared AIR runtime to ‘install’ a .air file will not create a signed
application, hence new MacOS versions may block these from running. To ensure a properly signed
MacOS application is created, the “bundle” option should be used with native code-signing options
(i.e. those appearing after the “-target bundle” option) having a KeychainStore type with the alias
being the full certificate name.

mailto:adobe.support@harman.com
https://github.com/airsdk/Adobe-Runtime-Support/issues
https://airsdk.harman.com/
https://airsdk.dev/
https://airsdk.dev/
https://airsdk.harman.com/runtime

Public 4(18)
ADOBE AIR SDK RELEASE NOTES Version 50.2.1.1

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

2 Release Information
2.1 Delivery Method

This release shall be delivered via the AIR SDK website: https://airsdk.harman.com/download

The update will also be available via the AIR SDK Manager, see https://github.com/airsdk/Adobe-
Runtime-Support/discussions/2291

2.2 The Content of the Release

2.2.1 Detailed SW Content of the Release

Component Name SDK 50.2.1.1

Core Tools 2.3.0

AIR Tools 2.0.1

Windows platform package 2.3.0

MacOS platform package 2.3.0

Linux platform package 2.3.0

Android platform package 2.3.0

iPhone platform package 2.3.0

2.2.2 Delivered Documentation

Title Document Number Version

Adobe AIR SDK Release Notes HCS19-000287 50.2.1

2.2.3 Build Environment

Platform Build Details

Android Target SDK Version: 31

Minimum SDK Version: 14 (ARMv7, x86); 21 (ARMv8, x86_64)

Platform Tools: 28.0.3

Build Tools: 31.0.0

SDK Platform: Android-31

Note – these are the versions we use to build the AIR SDK and runtime,
we also recommend developers match the same ‘target SDK’ version as
here.

iOS iPhoneOS SDK Version: 16.0

iPhoneSimulator SDK Version: 16.0

XCode Version: 14.0

Minimum iOS Target: 11.0

https://airsdk.harman.com/download
https://github.com/airsdk/Adobe-Runtime-Support/discussions/2291
https://github.com/airsdk/Adobe-Runtime-Support/discussions/2291

Public 5(18)
ADOBE AIR SDK RELEASE NOTES Version 50.2.1.1

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

tvOS tvOS SDK Version: 16.0

tvSimulator SDK Version: 16.0

XCode Version: 14.0

Minimum tvOS Target: 11.0

MacOS MacOS SDK Version: 13.1

XCode Version: 14.0

Minimum macOS Target: 10.12

Windows Visual Studio Version: 14.0.25431.01 Update 3

Linux GCC Version 5.4.0 20160609 (Ubuntu 16.04.5)

2.3 AIR for Linux – Restrictions

The AIR SDK now supports some capabilities on Linux platforms. This is only available to developers
with a commercial license to the SDK, and has some restrictions:

- No “shared runtime” support: applications would need to be built as ‘bundle’ packages with
the captive runtimes

- Currently only x86_64 support – ARM64 is planned and potentially 32-bit variants if needed
- Packaging into native installers (“native” target type for .deb or .rpm files) is currently not

working: please create a “bundle” target and use Linux tools to distribute these

The Linux functionality has not been as widely tested and is provided “as-is” – developers are free to
distribute applications built using the SDK, and please report any issues found.

2.4 AIR for Flex users

HARMAN have continued Adobe’s strategy of issuing two AIR SDKs per platform: the first of these
(“AIRSDK_[os].zip”) contains the newer ActionScript compiler and is a full, self-contained SDK for
compiling and packaging AIR applications. The second of these is for combination with the Flex SDK
(“AIRSDK_Flex_[os].zip”) which doesn’t include a number of the files necessary for
ActionScript/MXML compilation. These SDKs should be extracted over the top of an existing, valid
Flex SDK.

See instructions at https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-air-sdk-flex-sdk.html.

NOTE when copying an AIR SDK over a previous version, there may be errors relating to
“MainWindow.nib” and “MainWindow-iPad.nib”. These were originally files, and then had been turned
into folders by a version of Xcode. However these should now be files again hence there may well be
problems with overwriting of file types. If you see this error, the best approach is to delete these
files/folders from the target location and then perform the copy/extraction again.

https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-air-sdk-flex-sdk.html

Public 6(18)
ADOBE AIR SDK RELEASE NOTES Version 50.2.1.1

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

3 Summary of changes
3.1 Runtime and namespace version

Namespace: 50.2

SWF version: 50

The namespace and SWF version updates are made across all platforms and may be used to access
the updated ActionScript APIs that have been introduced with AIR version 50.0. The namespace update
is required for opening any SWF file that’s got a SWF version of 50, or when using any of the new XML
application descriptor flags.

3.2 Build Tools

The Android build tools and platform used to create the AIR runtime files has been updated to
Android-31 with the default target SDK now set to this level in the generated Android manifest files.

Xcode 14.0.1 and the latest macOS and iphoneOS SDKs are now being used to build the AIR SDK.

The build system for this is on a version of macOS that doesn’t support 32-bit processes hence we
cannot generate the 32-bit versions of the stub files. This means that we can no longer support older
32-bit iPhone/iPad devices.

3.3 AS3 APIs

No changes

3.4 Features

Reference: AIR-4357

Title: AIR Android – adding ‘runtimeInBackgroundThread’flag to app
descriptor

Applies to: Android runtime component

Description: A new app descriptor setting has been introduced under the “<android>”
tag, “<runtimeInBackgroundThread>”, which can be set to “true” in
order to switch the AIR runtime into a separate (non-UI) thread during
application start-up. This means that there is an additional (internal) event
queue added which should mean that the Android UI remains responsive to
events, eliminating the “App Not Responding” problems particularly during
start-up.

Note that this does not actually improve performance, but shouldn’t
adversely affect it. There may need to be changes in any ANE that uses
functions that must be run in the main/UI thread of the application.

Public 7(18)
ADOBE AIR SDK RELEASE NOTES Version 50.2.1.1

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: AIR-6386

Title: Adding handlers for Developer ID Application certs for .air on
macOS

Applies to: macOS runtime components

Description: AIR applications (packaged as .air files) can now be signed using a standard
Apple Developer ID Application certificate. When the AIR runtime is installing
such an application, it will validate the certificate via the OS and use this to
declare to the end user that the publisher is verified.

Reference: AIR-6424

Title: Adding support for TCP_NODELAY via a host name flag

Applies to: All runtime components

Description: As an interim measure due to a customer request, it is now possible to
append "?TCP_NODELAY" to an IPv4 socket address in order to switch the
socket into a mode that avoids Nagle’s algorithm. i.e. smaller socket packets
are sent with lower latency, but potentially wasting bandwidth. Default
behaviour previously depended on the platform and setting.

Reference: AIR-6438

Title: Adding support for content:// URIs on Android

Applies to: Android runtime components

Public 8(18)
ADOBE AIR SDK RELEASE NOTES Version 50.2.1.1

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: To allow users to access files provided via the Storage Access Framework,
support is now included for a File to be given a “content://” value as its native
path (only on Android). This value will be resolved via the standard
application content resolver, in order to open the file and provide normal file
property and read/write access.

As part of this, the File.browseXXX functions have been updated to use the
Storage Access Framework. This means that attempting to browse for a file
to open will request the file via the standard Android document open intent;
attempting to save a file will use the document save intent, and support has
been added for browsing for a directory/folder using the document tree
intent.

Permissions have changed slightly; the above File.browseXXX functions will
always try to grant persistent permissions based on the user’s selection. If
the application attempts to access a file for which it has no permission, it will
trigger the standard permission error; if the “requestPermission()” method is
then called on this File object, it will trigger the ‘open document’ intent which
means that the user can grant read access to the file. This is not always
useful though, since it is not possible to force the user only to choose the
selected file; the runtime does a test to see whether the requested file can be
opened following the user’s choice in order to return a ‘granted’ permission
status. Calling “requestPermission()” on an empty file now will always
immediately return a success status but this does not mean that the
application has access to anything beyond its normal scoped storage
capabilities.

Reference: Github-956 https://github.com/airsdk/Adobe-Runtime-Support/issues/956

Title: Adding gradle dependencies sections to Android ANEs

Applies to: Core build tools (Android ANEs)

Description: Rather than using “packagedDependencies” and “packagedResources”
sections of an Android platform extension descriptor, it is now possible to
add a “gradle” section, within which “repositories” and “dependencies” can
be added (as described in the above link for github-956). This allows ANE
developers to maintain any dependencies on third party components without
having to manually go through too update/re-pack each of these.

Reference: Github-2357 https://github.com/airsdk/Adobe-Runtime-Support/issues/2357

Title: Adding 'onRequestPermissionsResult' mechanism for Android ANEs
to use

Applies to: Android runtime components

https://github.com/airsdk/Adobe-Runtime-Support/issues/956
https://github.com/airsdk/Adobe-Runtime-Support/issues/2357

Public 9(18)
ADOBE AIR SDK RELEASE NOTES Version 50.2.1.1

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: The AIR Android Activity Wrapper class has been updated so that ANEs can
request permissions via the main activity, and receive a result in a callback.
The mechanism is very similar to the ActivityResultCallback capability (which
has also been updated so that the interface is public) – note that a non-zero
permission request code must be used, zero is reserved for internal use.

Reference: Github-2369 https://github.com/airsdk/Adobe-Runtime-Support/issues/2369

Title: Adding a package error if the macOS captive runtime is
malformed

Applies to: Core build tools (packaging macOS applications)

Description: Minor update to generate an appropriate packaging error if the macOS
captive runtime or any framework files are invalid or malformed (e.g. files
when symlinks are expected).

Reference: Github-2417 https://github.com/airsdk/Adobe-Runtime-Support/issues/2417

Title: Building support for Apple tvOS applications

Applies to: iPhone runtime components

Description: The “Apple tvOS” build has been re-created and updated to use the
appletvos/appletvsimulator 16.0 SDK. Functionality and maturity should be
equivalent to the last version that Adobe had created for this platform.

Reference: Github-2435 https://github.com/airsdk/Adobe-Runtime-Support/issues/2435

Title: Adding configuration file 'iPhoneSimulator' entry

Applies to: Core build tools (iPhone development on macOS)

Description: A new option has been added into the adt.cfg file so that the iPhone
simulator name can be set up, overriding the default (which had previously
been set to “iPhone 6” but has also been updated, to “iPhone 11”).

Reference: Github-2467 https://github.com/airsdk/Adobe-Runtime-Support/issues/2467

https://github.com/airsdk/Adobe-Runtime-Support/issues/2369
https://github.com/airsdk/Adobe-Runtime-Support/issues/2417
https://github.com/airsdk/Adobe-Runtime-Support/issues/2435
https://github.com/airsdk/Adobe-Runtime-Support/issues/2467

Public 10(18)
ADOBE AIR SDK RELEASE NOTES Version 50.2.1.1

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Title: Adding Java FREByteArray setLength method

Applies to: Core build tools (Android ANE library)

Description: A new method “setLength” has been added to the Java FREByteArray class,
allowing the length of a byte array object to be set directly. It can also be set
by passing a length to the static FREByteArray.newByteArray() method.

Note that the C++ function, FRESetArrayLength, has also been updated as
part of this so that it can take a ByteArray object as well as Array and Vector
objects.

Reference: Github-2469 https://github.com/airsdk/Adobe-Runtime-Support/issues/2469

Title: Removing default Android INTERNET permission injection

Applies to: Android runtime component

Description: By default, ADT had been adding in the “INTERNET” permission for Android
applications. This was left over from earlier functionality and was no longer
needed, so has been removed. Applications requiring access to the internet
should list this in their Android permissions in the Application descriptor file.

3.5 Bug Fixes

3.5.1 Release 50.2.1.1

Reference: AIR-5846

Title: Remove A2712Enabler from SDK/runtime

Applies to: macOS runtime component

Description: Removing an unnecessary file from the Adobe AIR framework on macOS

Reference: Github-2208 https://github.com/airsdk/Adobe-Runtime-Support/issues/2208

Title: Allow activation of windows on Linux even if they aren’t
owner/owned

Applies to: Linux runtime component

https://github.com/airsdk/Adobe-Runtime-Support/issues/2469
https://github.com/airsdk/Adobe-Runtime-Support/issues/2208

Public 11(18)
ADOBE AIR SDK RELEASE NOTES Version 50.2.1.1

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: The ‘NativeActivation.activate()’ method was behaving differently on Linux
and was not causing a window to be activated in certain situations.

Reference: Github-2339 https://github.com/airsdk/Adobe-Runtime-Support/issues/2339

Title: Ensuring Win32 Webview classes move properly between stages

Applies to: Windows runtime component

Description: The Win32 Webview (both IE-based and Edge-based) were not moving
properly between different NativeWindow instances when their ‘stage’
properties were being updated. This change fixes the behaviour so that it’s
possible to move an instance of a StageWebView control from one stage to
another.

Reference: Github-2372 https://github.com/airsdk/Adobe-Runtime-Support/issues/2372

Title: Adding a default string for
NSLocationAlwaysAndWhenInUseUsageDescription in IPA info plist
file

Applies to: iPhone runtime component

Description: This new usage description had been required by Apple, so a default string
has been added alongside the existing NSLocation…UsageDescription
values. By default these will be generated in any IPA file.

Reference: Github-2375 https://github.com/airsdk/Adobe-Runtime-Support/issues/2375

Title: Fixing framework code resources in IPA signature

Applies to: iPhone runtime component

Description: An error was found when signing a framework that included string bundles,
where they were correctly added into the sha-1 signatures but not into the
sha-256 signatures that Apple now use.

Reference: Github-2385 https://github.com/airsdk/Adobe-Runtime-Support/issues/2385

Title: Reverting FDB Worker workaround from github-399

https://github.com/airsdk/Adobe-Runtime-Support/issues/2339
https://github.com/airsdk/Adobe-Runtime-Support/issues/2372
https://github.com/airsdk/Adobe-Runtime-Support/issues/2375
https://github.com/airsdk/Adobe-Runtime-Support/issues/2385

Public 12(18)
ADOBE AIR SDK RELEASE NOTES Version 50.2.1.1

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Applies to: All runtime components

Description: Changes from the fix for https://github.com/airsdk/Adobe-Runtime-
Support/issues/399 had caused a problem in Workers when the debugger
was active, causing ANE to then fail. The original issue was re-checked and
a better fix has been implemented without this side-effect.

Reference: Github-2441 https://github.com/airsdk/Adobe-Runtime-Support/issues/2441

Title: Ensuring IPA framework packaging handles universal binaries
without armv7

Applies to: iPhone runtime components

Description: The code to check whether a binary was “universal” (aka “fat”) or “thin” was
just looking to see whether both arm64 and armv7 variants were present, so
was mis-identifying a fat file that didn’t include armv7. This has been updated
to check for the actual file type so that it can cope with all variants.

https://github.com/airsdk/Adobe-Runtime-Support/issues/399
https://github.com/airsdk/Adobe-Runtime-Support/issues/399
https://github.com/airsdk/Adobe-Runtime-Support/issues/2441

Public 13(18)
ADOBE AIR SDK RELEASE NOTES Version 50.2.1.1

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

4 Android builds
4.1 AAB Target

Google introduced a new format for packaging up the necessary files and resources for an application
intended for uploading to the Play Store, called the Android App Bundle. Information on this can be
found at https://developer.android.com/guide/app-bundle

AIR now supports the App Bundle by creating an Android Studio project folder structure and using
Gradle to build this. It requires an Android SDK to be present and for the path to this to be passed in
to ADT via the “-platformsdk” option (or set via a config file – it also checks in the default SDK
download location). It also needs to have a JDK present and available, and will attempt to find this
either from configuration files or via the JAVA_HOME environment variable (or if there is an Android
Studio installation present in the default location, using the JDK provided by that).

To generate an Android App Bundle file, the ADT syntax is similar to the “apk” usage:

adt -package -target aab <signing options> output.aab <app descriptor and files> [-extdir
<folder>] -platformsdk <path_to_android_sdk>

No “-arch” option can be provided, as the tool will automatically include all of the architecture types.
Signing options are optional for an App Bundle.

Note that the creation of an Android App Bundle involves a few steps and can take significantly longer
than creating an APK file. We recommend that APK generation is still used during development and
testing, and the AAB output can be used when packaging up an application for upload to the Play
Store.

ADT allows an AAB file to be installed onto a handset using the “-installApp” command, which
wraps up the necessary bundletool commands that generate an APKS file (that contains a set of APK
files suitable for a particular device) and then installs it. If developers want to do this manually,
instructions for this are available at https://developer.android.com/studio/command-
line/bundletool#deploy_with_bundletool, essentially the below lines can be used:

java -jar bundletool.jar build-apks --bundle output.aab --output output.apks --connected-
device

java -jar bundletool.jar install-apks --apks=output.apks

Note that the APK generation here will use a default/debug keystore; additional command-line
parameters can be used if the output APK needs to be signed with a particular certificate.

4.2 Play Asset Delivery

As part of an App Bundle, developers can create ”asset packs” that are delivered to devices
separately from the main application, via the Play Store. For information on these, please refer to the
below link:

https://developer.android.com/guide/playcore/asset-delivery

In order to create asset packs, the application XML file needs to be modified within the <android>
section, to list the asset packs and their delivery mechanism, and to tell ADT which of the files/folders
being packaged should be put into which asset pack.

For example:
<assetPacks>

https://developer.android.com/guide/app-bundle
https://developer.android.com/studio/command-line/bundletool#deploy_with_bundletool
https://developer.android.com/studio/command-line/bundletool#deploy_with_bundletool
https://developer.android.com/guide/playcore/asset-delivery

Public 14(18)
ADOBE AIR SDK RELEASE NOTES Version 50.2.1.1

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

 <assetPack id="ImageAssetPack" delivery="on-demand"
folder="AP_Images"/>

</assetPacks>

This instruction would mean that any file found in the ”AP_Images” folder would be redirected into an
asset pack with a name ”ImageAssetPack”. The delivery mechanisms can be ”on-demand”, ”fast-
follow” or ”install-time” per the Android specifications.

Note that assets should be placed directly into the asset pack folder as required, rather than adding
an additional ”src/main/assets” folder structure that the Android documentation requires. This folder
structure is created automatically by ADT during the creation of the Android App Bundle.

The asset pack folder needs to be provided as a normal part of the command line for the files that
should be included in a package. So for example if the asset pack folder was ”AP_Images” and this
was located in the root folder of your project, the command line would be:
adt -package -target aab MyBundle.aab application.xml MyApp.swf AP_Images
[then other files, -platformsdk directive, etc]

If there were a number of asset packs and all of the relevant folders were found under an
”AssetPacks” folder in the root of the project, the command line would be:
adt -package -target aab MyBundle.aab application.xml MyApp.swf -C
AssetsPacks . [then other files, -platformsdk directive, etc]

To access the asset packs via the Android Asset Pack Manager functionality, an ANE is available via
the AIR Package Manager tool. See https://github.com/airsdk/ANE-PlayAssetDelivery/wiki

4.3 Android Text Rendering

Previously, the rendering of text on Android had been handled via a native library built into the C++-
based AIR runtime file. This had some restrictions and issues with handling fonts, which caused major
problems with Android 12 when the font fallback mechanism was changed and the native code no
longer coped with this. To resovle this, a new text rendering mechanism has been implemented that
uses public Android APIs in order to set up the fonts and to render the text.

The new mechanism uses JNI to communicate between the AIR runtime and the Android graphics
classes for this, and has some differences with the legacy version. One of the changes that has been
made is to correct the display of non-colorized text elements when rendering to bitmap data: in earlier
builds, if some text included an emoji with a fixed color (e.g. ”flames” that are always yellow/orange
even if you request a green font color) then these characters appeared blue, due to the different pixel
formats used by Android vs the AIR BitmapData objects. With the new mechanism, AIR correctly
renders these characters to BitmapData (although the problem still remains when rendering device
text to a ’direct’ mode display list).

Some developers may not want to switch to this new mechanism yet, and others may want their
applications to always use it. Some would perhaps want it only when absolutely necessary i.e. from
Android 12 onwards. To cope with this request, there is a new application descriptor setting that can
be used: ”<newFontRenderingFromAPI>” which shoudl be placed within the <android> section of the
descriptor XML. The property of this can be used to set the API version on which the new rendering
mechanism takes place. The default value is API level 31 which corresponds to Android 12.0 (see
https://source.android.com/setup/start/build-numbers). So for example if you always want devices to
use the new mechanism, you can add:

<newFontRenderingFromAPI>0</newFontRenderingFromAPI>

whereas if you never want devices to use this, you could add:
<newFontRenderingFromAPI>99999</newFontRenderingFromAPI>

https://github.com/airsdk/ANE-PlayAssetDelivery/wiki
https://source.android.com/setup/start/build-numbers

Public 15(18)
ADOBE AIR SDK RELEASE NOTES Version 50.2.1.1

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

5 Windows builds
The SDK now includes support for Windows platforms, 32-bit and 64-bit. We recommend that
developers use the “bundle” option to create an output folder that contains the target application. This
needs to be packaged up using a third party installer mechanism, in order to provide something that
can be easily distributed to and installed by end users. HARMAN are looking at adapting the previous
AIR installer so that it would be possible for the AIR Developer Tool to perform this step, i.e. allowing
developers to create installation MSI files for Windows apps in a single step.

Instructions for creating bundle packages are at:

https://help.adobe.com/en_US/air/build/WSfffb011ac560372f709e16db131e43659b9-8000.html

Note that 64-bit applications can be created using the “-arch x64” command-line option, to be added
following the “-target bundle” option.

https://help.adobe.com/en_US/air/build/WSfffb011ac560372f709e16db131e43659b9-8000.html

Public 16(18)
ADOBE AIR SDK RELEASE NOTES Version 50.2.1.1

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

6 MacOS builds
MacOS builds are provided only as 64-bit versions. A limited shared runtime option is being prepared
so that existing AIR applications can be used on Catalina, but the expectation for new/updated
applications is to also use the “bundle” option to distribute the runtime along with the application, as
per the above Windows section.

Note that Adobe’s AIR 32 SDK can be used on Catalina if the SDK is taken out of ‘quarantine’ status.
For instructions please see an online guide such as:

https://www.soccertutor.com/tacticsmanager/Resolve-Adobe-AIR-Error-on-MacOS-Catalina.pdf

AIR SDK now supports MacOS Big Sur including on the new ARM-based M1 hardware: applications
will be generated with ‘universal binaries’ and most of the SDK tools are now likewise built as
universal apps.

https://www.soccertutor.com/tacticsmanager/Resolve-Adobe-AIR-Error-on-MacOS-Catalina.pdf

Public 17(18)
ADOBE AIR SDK RELEASE NOTES Version 50.2.1.1

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

7 iOS support
For deployment of AIR apps on iOS devices, the AIR Developer Tool will use the provided tools to
extract the ActionScript Byte Code from the SWF files, and compile this into machine code that is then
linked with the AIR runtime and embedded into the IPA file. The process of ahead-of-time compilation
depends upon a utility that has to run with the same processor address size as the target architecture:
hence to generate a 32-bit output file, it needs to run a 32-bit compilation process. This causes a
problem on MacOS Catalina where 32-bit binaries will not run.

Additionally, due to the generation of stub files from the iPhone SDK that are used in the linking
process – which are created in a similar, platform-specific way – it is not possible to create armv7-
based stub files when using Catalina or later. From release 33.1.1.620, the stub files are based on
iOS15 and are purely 64-bit. This means that no 32-bit IPAs can be generated, even when running on
older macOS versions or on Windows.

Public 18(18)
ADOBE AIR SDK RELEASE NOTES Version 50.2.1.1

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

8 Splash Screens
For our ‘free tier’ users, a splash screen is injected into the start-up of the AIR process, displaying the
HARMAN and AIR logos for around 2 seconds whilst the start-up continues in the background. There
are different mechanisms used for this on different platforms, the current systems are described
below.

8.1 Desktop (Windows/macOS)

Splash screens are displayed in a separate window centred on the main display, while the start-up
continues behind these. The processing of ActionScript is delayed until after the splash screen has
been removed.

8.2 Android

The splash screen is displayed during start-up and happens immediately the runtime library has been
loaded. After a slight delay the initial SWF file is loaded in and when processing for this starts, the
splash screen is removed.

8.3 iOS

The splash screen is implemented as a launch storyboard with the binary storyboard and related
assets included in the SDK. This has implications for those who are providing their own storyboards or
images in an Assets.car file:

- If you are on the ‘free tier’ then the AIR developer tool will ignore any launch storyboard you
have specified within your application descriptor file, or provided within the file set for
packaging into the IPA file.

- If you are creating an Assets.car file, then you need to add in the AIR splash images from the
SDK which are in the “lib/aot/res” folder. These should be copied and pasted into your
“.xcassets” folder in the Xcode project that you are using for creation of your assets.

Troubleshooting:

Message from ADT: “Warning: free tier version of AIR SDK will use the HARMAN launch
storyboard” – this will be displayed if a <UILaunchStoryboardName> tag has been added via the
AIR application descriptor file. The tag will be ignored and the Storyboard from the SDK will be used
instead.

Message from ADT: “Warning: removing user-included storyboard "[name]"” will be displayed
if there was a Storyboardc file that had been included in the list of files to package: this will be
removed.

Message from ADT: "Warning: free tier version of AIR SDK must use the HARMAN launch
storyboard" – this will be displayed if the Storyboardc file in the SDK has been replaced by a user-
generated one.

If a white screen is shown during start-up: check that the HARMAN splash images are included in
your assets.car file. Note that the runtime may shut down if it doesn’t detect the appropriate splash
images.

The runtime may also shut down for customers with a commercial license if a storyboard has been
specified within the AIR descriptor file but not added via the list of files to package into the IPA file.

	1 Release Overview
	1.1 Key changes
	1.2 Limitations
	1.3 Feedback
	1.4 Notes

	2 Release Information
	2.1 Delivery Method
	2.2 The Content of the Release
	2.2.1 Detailed SW Content of the Release
	2.2.2 Delivered Documentation
	2.2.3 Build Environment

	2.3 AIR for Linux – Restrictions
	2.4 AIR for Flex users

	3 Summary of changes
	3.1 Runtime and namespace version
	3.2 Build Tools
	3.3 AS3 APIs
	3.4 Features
	3.5 Bug Fixes
	3.5.1 Release 50.2.1.1

	4 Android builds
	4.1 AAB Target
	4.2 Play Asset Delivery
	4.3 Android Text Rendering

	5 Windows builds
	6 MacOS builds
	7 iOS support
	8 Splash Screens
	8.1 Desktop (Windows/macOS)
	8.2 Android
	8.3 iOS

