

Public 1(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Adobe AIR SDK Release Notes

Version 50.2.2.3
Date 30 March 2023
Document ID HCS19-000287
Owner Andrew Frost

Public 2(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Table of contents
1 Release Overview ...3
1.1 Key changes ...3
1.2 Deployment ..3
1.3 Limitations ..3
1.4 Feedback ..4
1.5 Notes ..4

2 Release Information ...5
2.1 Delivery Method ...5
2.2 The Content of the Release ...5
2.3 AIR for Linux – Restrictions ...6
2.4 AIR for Flex users ..6

3 Summary of changes ...8
3.1 Runtime and namespace version ..8
3.2 Build Tools ..8
3.3 AS3 APIs ..8
3.4 Features ...8
3.5 Bug Fixes... 12

4 Android builds ... 20
4.1 AAB Target .. 20
4.2 Play Asset Delivery ... 20
4.3 Android Text Rendering .. 21
4.4 Android File System Access ... 22

5 Windows builds ... 23

6 MacOS builds... 24

7 iOS support .. 25

8 Splash Screens ... 26
8.1 Desktop (Windows/macOS) .. 26
8.2 Android .. 26
8.3 iOS ... 26

Public 3(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

1 Release Overview
Release 50.2.2.1 of the AIR SDK is a feature update – a number of new features have been added
and bugs have been fixed, although nothing that requires a change to the AIR namespace values or
SWF version codes.

Release 50.2.2.2 is a minor update to fix some issues, updates to this document are written in olive
green font.

Release 50.2.2.3 fixes a few more issues, with some focus on the Android filesystem and permissions
handling. Note that there are still some problems and restrictions around this, it’s increasingly likely
that new ActionScript APIs may be needed to reflect how the Android file access now works (or
potentially these APIs may be provided through an ANE). A fuller description of the changes and
approaches for file access on Android has been added into section 4.4. Updates relating to 50.2.2.3
are written in a dark orange font.

1.1 Key changes

The initial support for tvOS added in 50.2.1 has been updated so should now work properly.

Apple SDKs have been updated so this build of the AIR SDK was created with macOS SDK 13.1,
iPhoneOS/iPadOS SDKs 16.2, and tvOS SDK 16.1, all using Xcode 14.2.

“ScreenMode” support has been rolled out to all platforms albeit with some limitations in what may be
possible on different devices; typically, this just allows access to more information about the current
screen or display, without being able to update to a different mode.

Additional access has been provided from Android Java ANEs to allow these to render native
(Android) video content to a Stage3D VideoTexture object. This should allow third party video players,
such as Exoplayer, to render content directly into the Stage3D graphics pipeline.

A number of bug fixes have been provided as well as other minor updates. For further information
please see section 3. Updates for 50.2.2.2 are in section 3.5.2. Updates for 50.2.2.3 are in section
3.5.3.

1.2 Deployment

We are hoping to start deploying updates via the AIR SDK Manager now. Whilst the monolithic zip
files will still be available from the https://airsdk.harman.com website, this may be updated less
frequently in the future with only major releases. The goal is for the AIR SDK Manager to help us
publish minor updates/fixes with a quicker cadence without resulting in a large amount of effort and
data downloads.

The AIR SDK Manager is now available from the https://airsdk.dev website, as part of the “getting
started” instructions:

https://airsdk.dev/docs/basics/install/macos

https://airsdk.dev/docs/basics/install/windows

1.3 Limitations

For macOS users on 10.15+, the SDK may not work properly unless the quarantine setting is
removed from the SDK: $ xattr -d -r com.apple.quarantine /path/to/SDK

https://airsdk.harman.com/
https://airsdk.dev/
https://airsdk.dev/docs/basics/install/macos
https://airsdk.dev/docs/basics/install/windows

Public 4(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Please note that there is no longer support for 32-bit IPA files, all IPAs will use just 64-bit binaries now
so older iPhones/iPads may not be supported.

Android development should now be performed with an installation of Android Studio and the SDK
and build tools, so that the new build mechanism (using Gradle and the Android Gradle Plug-in) can
use the same set-up as Android Studio.

Please note also that AIR applications installed on the latest macOS versions on Apple silicon may be
unable to run. It appears that Apple are applying different security/code-signing requirements on
applications that are running natively as ARM64 based apps: if you encounter this issue, please try
setting the application to launch using Rosetta. See below notes for more information.

1.4 Feedback

Any issues found with the SDK should be reported to adobe.support@harman.com or preferably
raised on https://github.com/airsdk/Adobe-Runtime-Support/issues.

The website for AIR SDK is available at: https://airsdk.harman.com with the developer portal available
under https://airsdk.dev

1.5 Notes

Contributors to the https://airsdk.dev website would be very welcomed: this portal is being built up as
the repository of knowledge for AIR and will be taking over from Adobe’s developer websites. At some
point the AS3 documentation will be migrated to this location and this can then be maintained directly
by HARMAN (and/or the community) rather than having AS3 API updates listed within these release
notes.

For developers who are packaging applications for desktop AIR, there is now a shared AIR runtime
that is available for end users to download at https://airsdk.harman.com/runtime. However, we
continue to recommend that applications are packaged up with the captive bundle mechanism to
include the runtime and remove the dependency upon this shared package.

On MacOS in particular, the use of the shared AIR runtime to ‘install’ a .air file will not create a signed
application, hence new MacOS versions may block these from running. To ensure a properly signed
MacOS application is created, the “bundle” option should be used with native code-signing options
(i.e. those appearing after the “-target bundle” option) having a KeychainStore type with the alias
being the full certificate name.

mailto:adobe.support@harman.com
https://github.com/airsdk/Adobe-Runtime-Support/issues
https://airsdk.harman.com/
https://airsdk.dev/
https://airsdk.dev/
https://airsdk.harman.com/runtime

Public 5(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

2 Release Information
2.1 Delivery Method

This release shall be delivered via the AIR SDK website: https://airsdk.harman.com/download

The update will also be available via the AIR SDK Manager.The latest version of this can be
downloaded from https://github.com/airsdk/airsdkmanager-releases/releases.

2.2 The Content of the Release

2.2.1 Detailed SW Content of the Release

Component Name SDK 50.2.2.1 SDK 50.2.2.2 SDK 50.2.2.3

Core Tools 2.4.0 2.4.1 2.4.2

AIR Tools 2.0.1 2.0.1 2.0.1

Windows platform package 2.4.0 2.4.0 2.4.1

MacOS platform package 2.4.0 2.4.0 2.4.1

Linux platform package 2.4.0 2.4.0 2.4.1

Android platform package 2.4.0 2.4.0 2.4.1

iPhone platform package 2.4.0 2.4.0 2.4.1

2.2.2 Delivered Documentation

Title Document Number Version

Adobe AIR SDK Release Notes HCS19-000287 50.2.2

2.2.3 Build Environment

Platform Build Details

Android Target SDK Version: 31

Minimum SDK Version: 16 (ARMv7, x86); 21 (ARMv8, x86_64)

Platform Tools: 28.0.3

Build Tools: 31.0.0

SDK Platform: Android-31

Note – these are the versions we use to build the AIR SDK and runtime,
we also recommend developers match the same ‘target SDK’ version as
here.

iOS iPhoneOS SDK Version: 16.2

iPhoneSimulator SDK Version: 16.2

XCode Version: 14.2

Minimum iOS Target: 11.0

https://airsdk.harman.com/download
https://github.com/airsdk/airsdkmanager-releases/releases

Public 6(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

tvOS tvOS SDK Version: 16.1

tvSimulator SDK Version: 16.1

XCode Version: 14.2

Minimum tvOS Target: 11.0

MacOS MacOS SDK Version: 13.1

XCode Version: 14.2

Minimum macOS Target: 10.15

Windows Visual Studio Version: 14.0.25431.01 Update 3

Linux GCC Version 5.4.0 20160609 (Ubuntu 16.04.5)

2.3 AIR for Linux – Restrictions

The AIR SDK now supports some capabilities on Linux platforms. This is only available to developers
with a commercial license to the SDK, and has some restrictions:

- No “shared runtime” support: applications would need to be built as ‘bundle’ packages with
the captive runtimes

- Currently only x86_64 support – ARM64 is planned and potentially 32-bit variants if needed
- Packaging into native installers (“native” target type for .deb or .rpm files) is currently not

working: please create a “bundle” target and use Linux tools to distribute these

The Linux functionality has not been as widely tested and is provided “as-is” – developers are free to
distribute applications built using the SDK, and please report any issues found.

2.4 AIR for Flex users

HARMAN have continued Adobe’s strategy of issuing two AIR SDKs per platform: the first of these
(“AIRSDK_[os].zip”) contains the newer ActionScript compiler and is a full, self-contained SDK for
compiling and packaging AIR applications. The second of these is for combination with the Flex SDK
(“AIRSDK_Flex_[os].zip”) which doesn’t include a number of the files necessary for
ActionScript/MXML compilation. These SDKs should be extracted over the top of an existing, valid
Flex SDK.

The original instructions from Adobe are at https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-
air-sdk-flex-sdk.html but a few alterations to this are needed to Step 4 if running on macOS. For this
platform, the downloaded AIR SDK zip needs to be expanded to a temporary area and then the copy
command needs to copy symbolic links as links rather than resolving them to files. This can be done
using a capital ’R’ rather than lowercase, hence:

cp -Rf /tmp/AIRSDK_Flex_MacOS/* /path-to-empty-FLEXSDK-directory

NOTE when copying an AIR SDK over a previous version, there may be errors relating to
“MainWindow.nib” and “MainWindow-iPad.nib”. These were originally files, and then had been turned
into folders by a version of Xcode. However these should now be files again hence there may well be
problems with overwriting of file types. If you see this error, the best approach is to delete these
files/folders from the target location and then perform the copy/extraction again.

https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-air-sdk-flex-sdk.html
https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-air-sdk-flex-sdk.html

Public 7(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Please note that the config files (air-config.xml, airmobile-config.xml, flex-config.xml) may need to be
updated to support new features and updates in AIR or in dependencies such as ANEs. For example
to ensure the correct SWF version is output, the below line would need to be updated (e.g. to ‘50’ for
AIR 50.x, or ‘44’ for AIR 33.1, etc):
<swf-version>14</swf-version>

Public 8(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

3 Summary of changes
3.1 Runtime and namespace version

Namespace: 50.2

SWF version: 50

The namespace and SWF version updates are made across all platforms and may be used to access
the updated ActionScript APIs that have been introduced with AIR version 50.0. The namespace update
is required for opening any SWF file that’s got a SWF version of 50, or when using any of the new XML
application descriptor flags.

3.2 Build Tools

The Android build tools and platform used to create the AIR runtime files has been updated to
Android-31 with the default target SDK now set to this level in the generated Android manifest files.

Xcode 14.2 and the latest macOS and iphoneOS/tvOS SDKs are now being used to build the AIR
SDK. Please note when the update was made to use Xcode 14.x, the minimum iOS/tvOS target
version was increased to 11.

The build system for this is on a version of macOS that doesn’t support 32-bit processes hence we
cannot generate the 32-bit versions of the stub files. This means that we can no longer support older
32-bit iPhone/iPad devices.

3.3 AS3 APIs

No changes

3.4 Features

Reference: AIR-6395

Title: Implementation of screen mode on mobile platforms

Applies to: All runtime component

Description: The flash.display.ScreenMode class is now supported on all platforms,
including iOS and Android. There are limitations on these in terms of the
capabilities that they have, and the it may not be possible to set the mode
(even where multiple modes are reported). The main intention is to enable
the support of the “refreshRate” property so that applications can determine
what the screen refresh rate is.

Reference: AIR-6451

Title: ADT output logging to SDK Manager troubleshooting tab

Public 9(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Applies to: Core build tools

Description: ADT has had logging capabilities for a while, that have to be enabled via a
configuration file and then output some debug information to a file in the
user’s home directory. This new feature additionally outputs such information
automatically to the AIR SDK Manager (version 0.3.0 onwards) when the
user is viewing the “Troubleshooting” tab.

Reference: AIR-6475

Title: AIR ANE - ability to use VideoTexture for Android video
players

Applies to: Android runtime components

Description: Two new APIs have been added to the definition of “FREContext”:

public android.view.Surface
getSurfaceFromVideoTexture(com.adobe.fre.FREObject);

This method takes an FREObject that must contain an AS3 “VideoTexture”
object, from the flash.display3D.textures package. It returns an Android
“Surface” object that can be set as the display output for a media feed – the
Surface is created from a SurfaceTexture object, for more info see:

SurfaceTexture | Android Developers

public void
setVideoTextureDimensions(com.adobe.fre.FREObject, int,
int);

This method must be used to set up the video dimensions, in order to start
displaying video content. The FREObject must be the AS3 “VideoTexture”
object used earlier; the two integer parameters are width and height.

Reference: Github-1777 https://github.com/airsdk/Adobe-Runtime-Support/issues/1777

Title: Ensuring iOS cameras support higher resolutions

Applies to: iOS runtime components

Description: The support for iOS camera resolution had been limited to the 1280x720
preset value. This has been updated to support 1920x1080 and 3840x2160
resolutions.

https://developer.android.com/reference/android/graphics/SurfaceTexture
https://github.com/airsdk/Adobe-Runtime-Support/issues/1777

Public 10(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: Github-1802 https://github.com/airsdk/Adobe-Runtime-Support/issues/1802

Title: Updating camera maximum resolution to 4K

Applies to: All runtime components

Description: The camera resolutions had been limited internally to 1920x1080, this has
been updated to support up to 3840x2160 resolutions.

Reference: Github-1984 https://github.com/airsdk/Adobe-Runtime-Support/issues/1984

Title: Enabling video on linux using ffmpeg

Applies to: Linux runtime components

Description: In order to support H.264 video display on Linux, a decoder adapter has
been added that uses FFMPEG (which must be available/installed on the
target computer with the appropriate codecs/support for H.264).

Reference: Github-2073 https://github.com/airsdk/Adobe-Runtime-
Support/discussions/2073

Title: Adding support for HTTPS_PROXY environment variable to ADT

Applies to: Core build tools

Description: To ensure that ADT can access the internet (for license checking and usage
reporting) it will now read an HTTPS_PROXY environment variable in order
to detect this and access the network via a proxy server.

Reference: Github-2482 https://github.com/airsdk/Adobe-Runtime-
Support/discussions/2482

Title: ADT certificate creation supporting 25 year default and beyond
2050

Applies to: Core build tools

https://github.com/airsdk/Adobe-Runtime-Support/issues/1802
https://github.com/airsdk/Adobe-Runtime-Support/issues/1984
https://github.com/airsdk/Adobe-Runtime-Support/discussions/2073
https://github.com/airsdk/Adobe-Runtime-Support/discussions/2073
https://github.com/airsdk/Adobe-Runtime-Support/discussions/2482
https://github.com/airsdk/Adobe-Runtime-Support/discussions/2482

Public 11(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: The default duration for a self-signed certificate created using ADT had been
set to 5 years. It was felt that 25 years would be a better duration, in line with
Google’s expectations for the Play Store.

ADT was not able to generate certificates that had an expiry date beyond
2049; this restriction has been lifted and the required format changes have
been made so that certificates cope with all dates.

Reference: Github-2502 https://github.com/airsdk/Adobe-Runtime-
Support/discussions/2502

Title: Adding file version information into .exe file generated by
windows bundle packaging

Applies to: Windows runtime components

Description: When creating a Windows bundle, the .exe file created for the new
application had missed a lot of the expected file property information. These
values are now being set by the runtime during the bundle package creation,
using values from the application descriptor file.

Reference: Github-2522 https://github.com/airsdk/Adobe-Runtime-
Support/discussions/2522

Title: Throw an error if 'new Vector()' is called with an invalid
argument type

Applies to: All runtime components

Description: Vector constructors are not particularly clear, with the ability to create a
vector of a set length via “new Vector()” but the ability to create a vector from
an existing array via “Vector()” as a function. If the “new” keyword is used i.e.
the Vector constructor, and the first argument (if present) is not a numeric
type, this will now throw an argument error so that it’s clear a programming
error has been made.

Reference: Github-2525 https://github.com/airsdk/Adobe-Runtime-
Support/discussions/2525

Title: Automatically injecting INTERNET permission for debug Android
packages

Applies to: Core build tools

https://github.com/airsdk/Adobe-Runtime-Support/discussions/2502
https://github.com/airsdk/Adobe-Runtime-Support/discussions/2502
https://github.com/airsdk/Adobe-Runtime-Support/discussions/2522
https://github.com/airsdk/Adobe-Runtime-Support/discussions/2522
https://github.com/airsdk/Adobe-Runtime-Support/discussions/2525
https://github.com/airsdk/Adobe-Runtime-Support/discussions/2525

Public 12(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: Previously, ADT had been adding in the “INTERNET” permission for Android
applications, but this was taken out in a previous release. However, this
capability is required for debugging with FDB or for access via Adobe Scout.
The permission is now being automatically injected again for any “-debug”
target type for Android applications.

3.5 Bug Fixes

3.5.1 Release 50.2.2.1

Reference: AIR-6037

Title: Updating iOS event handling to fix screen time impact on audio

Applies to: iOS runtime component

Description: If an app had been restricted by iOS “Screen Time” settings, and was then
launched with the “ignore limit” option, the audio playback initially failed and
then became chopped. This was due to some incorrect handling of
notification events from iOS, and has been updated to improve the behaviour
around screen time updates. Note that there are still outstanding issues with
choppy sound e.g. when playing back from within a background mode or on
some new phones when the display auto-adjustment is happening if there is
a lot of ambient light.

Reference: AIR-6479

Title: Fixing instabilities in macOS URL handling

Applies to: macOS runtime component

Description: Some problems had been reported around the handling of URL streams
where a race condition could cause an instability during the shutdown of an
http fetch operation. The code has been refactored to eliminate the access of
data that may have been cleaned up from a different thread.

Reference: AIR-6486

Title: Fixing crash in Android permission manager from CameraRoll
storage request

Applies to: Android runtime component

Public 13(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: The recent change in the Android AIR runtime to accommodate ‘content://’
URLs and permission requests via the Storage Access Framework had an
unintended side-effect when permission requests were raised from the
camera roll AS3 object. The code has been refactored to eliminate the risk of
instabilities in this code.

Reference: Github-1830 https://github.com/airsdk/Adobe-Runtime-
Support/discussions/1830

Title: Updating macho signing to allow replacing of a smaller
signature at the end of a file

Applies to: Core build tools

Description: Some iOS frameworks could not be re-signed by the ADT tool (typically only
affecting Windows-based packaging) because an existing signature was
present and a new signature would not fit into the space available. Where
this situation occurs and when the code signature is the last element in the
file (which should be most cases!) the tool now just extends the file size in
order to fit in the new signature.

Reference: Github-2293 https://github.com/airsdk/Adobe-Runtime-Support/issues/2293

Title: Add caching of method closures to reduce memory churn

Applies to: All runtime component

Description: When global functions are called (e.g. flash.utils.getTimer()) , a
method closure is created for this. The ActionScript virtual machine was
holding weak references to the closure as it would be needed every time the
function was called – but the memory management code was immediately
cleaning these up, resulting in a large churn of a closure being created for
every call. A limited cache has been added to ensure that methods called
frequently will be kept alive, reducing the memory overheads.

Reference: Github-2339 https://github.com/airsdk/Adobe-Runtime-Support/issues/2339

Title: Fixing StageWebView location handling across stages and
screens

Applies to: Windows runtime components

https://github.com/airsdk/Adobe-Runtime-Support/discussions/1830
https://github.com/airsdk/Adobe-Runtime-Support/discussions/1830
https://github.com/airsdk/Adobe-Runtime-Support/issues/2293
https://github.com/airsdk/Adobe-Runtime-Support/issues/2339

Public 14(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: The positioning of StageWebView objects on Windows (using both the IE-
based WebView and the Edge-based WebView2 components) had had
problems when setting viewPort values and when moving items between
different windows/stages. There are a number of updates that intend to fix
most of the cases, although it’s possible that some problems still remain.

Note that viewPort information is currently interpreted using window
coordinates, rather than stage coordinates (where the stage size doesn’t
match the window size i.e. if the scaleMode is not “noScale”).

Reference: Github-2385 https://github.com/airsdk/Adobe-Runtime-Support/issues/2385

Title: Ensuring Worker isolates load ANE swf definitions at start-up

Applies to: All runtime components

Description: When a Worker is started up, it does not run through the application
bootstrap code in which native extensions are identified and loaded. This
meant that any ANE code (from the library.swf files) was not available to a
secondary Worker object. A change has been made to go through the
loaded ANEs from the primary Worker and to re-load the SWF definitions
into the secondary Worker.

Reference: Github-2409 https://github.com/airsdk/Adobe-Runtime-
Support/discussions/2409

Title: Updating build settings for tvOS runtime to avoid missing
symbols

Applies to: iOS runtime components

Description: tvOS applications would not build/run with the previous AIR SDK release,
several changes have been made to ensure that the appropriate symbols are
provided and the necessary linking and runtime support has been updated.

Note that tvOS builds are only available for commercially-licensed
developers.

Reference: Github-2481 https://github.com/airsdk/Adobe-Runtime-Support/issues/2481

Title: Fixing performance slowdown when Direct3D window is minimised

Applies to: Windows runtime components

https://github.com/airsdk/Adobe-Runtime-Support/issues/2385
https://github.com/airsdk/Adobe-Runtime-Support/discussions/2409
https://github.com/airsdk/Adobe-Runtime-Support/discussions/2409
https://github.com/airsdk/Adobe-Runtime-Support/issues/2481

Public 15(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: With a mutli-windowed application, if the primary Stage3D window was
minimised, there was a performance impact on all secondary windows. This
was a result of how the Direct3D integration had been performed and the
behaviour of the Direct3D “present” call on a minimised window; this has
been eliminated to ensure there is no impact on performance if the main
window is minimised.

Reference: Github-2493 https://github.com/airsdk/Adobe-Runtime-Support/issues/2493

Title: Fixing crash on Linux when exiting fullscreen

Applies to: Linux runtime components

Description: When a sequence of events was triggered including full screen and
maximising of windows on Linux, it was possible for a race condition to result
in an application crash. A fix has been made to eliminate the multiple calls
that had caused the instability.

Reference: Github-2496 https://github.com/airsdk/Adobe-Runtime-
Support/discussions/2496

Title: Ensuring any folder structures are created for mac bundle
outputs

Applies to: macOS runtime components

Description: When a macOS application was packaged, if the output bundle was
requested to be created in a subfolder, there would be an error if the
subfolder did not exist. This change adds the creation of the full file path
where necessary so that the output bundle can be copied to this location.

Reference: Github-2508 https://github.com/airsdk/Adobe-Runtime-Support/issues/2508

Title: Ensuring that dpi-changed resize events are handled during
moveWindow

Applies to: Windows runtime components

Description: When a “moveWindow()” method is called to start the moving of a window
based on mouse events, the window was not properly resized if it was
moved between monitors that had different display scale values. The
necessary code handling had been disabled during a moveWindow
operation; this has been re-enabled for the situation where the resize request
is due to DPI changes.

https://github.com/airsdk/Adobe-Runtime-Support/issues/2493
https://github.com/airsdk/Adobe-Runtime-Support/discussions/2496
https://github.com/airsdk/Adobe-Runtime-Support/discussions/2496
https://github.com/airsdk/Adobe-Runtime-Support/issues/2508

Public 16(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

3.5.2 Release 50.2.2.2

Reference: AIR-6494: https://github.com/airsdk/Adobe-Runtime-Support/issues/2531

Title: IPA files need to have correct Xcode/platform tool version
codes

Applies to: Core build tools

Description: The AIR runtimes had been updated for iPhoneOS SDK 16.2 and
AppleTVOS SDK 16.1, but this hadn’t been reflected properly in the IPA files
generated by ADT. This update ensures the correct values are injected so
that the App Store recognises these as being built appropriately.

Reference: Github-2529: https://github.com/airsdk/Adobe-Runtime-Support/issues/2529

Title: Fixing code-signing of frameworks - omitting pkginfo from
files2 section

Applies to: Core build tools

Description: Another issue in the code-signing for IPA files when run on Windows: this
was a problem where the “PkgInfo” file signature was being provided in both
SHA-1 and SHA-256 sections of the signature, whereas it should only be
provided in the SHA-1 section.

3.5.3 Release 50.2.2.3

Reference: AIR-6525

Title: Generating stub files for swift libraries

Applies to: iOS runtime components

Description: iPhoneOS SDK 16 introduce an additional set of Swift libraries for
interoperability and compatibility. The .dylib files for these are now being
generated and included in the AIR SDK, as well as a compatibility library that
can be linked in for ANEs that require it (libSwiftCompat.a).

Reference: AIR-6526

Title: Ensuring ADT does not generate bitcode (for tvOS)

https://github.com/airsdk/Adobe-Runtime-Support/issues/2531
https://github.com/airsdk/Adobe-Runtime-Support/issues/2529

Public 17(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Applies to: Core build tools

Description: Bitcode is no longer required for App Store submissions, and they are
starting to reject applications that include it. ADT can inject this on demand
but was also defaulting to including bitcode for tvOS applications built for the
App Store. This default handling has been switched so that, by default, ADT
will never generate bitcode for IPA files.

Reference: Github-1984: https://github.com/airsdk/Adobe-Runtime-Support/issues/1984

Title: Removing Linux H.264 video support whilst issues are resolved

Applies to: Linux runtime components

Description: The initial attempt to provide H.264 video decoding capabilities via the use of
platform ffmpeg libraries has thrown up issues with compatibility, and how a
build of software is able to work against multiple versions of ffmpeg that are
binary incompatible with each other. This raised some fundamental issues
that need to be resolved, so for now the functionality has been disabled
again whilst the various options and solutions are considered.

Reference: Github-2326: https://github.com/airsdk/Adobe-Runtime-Support/issues/2326

Title: Workaround for Android ANE functions to run in UI thread

Applies to: Android runtime components

Description: The recent update to allow Android applications to have the runtime in a
background thread then caused a problem for some ANE files where Java
function calls are being made that must be made from the UI thread. Whilst
ANEs should ultimately be updated to handle the multi-threaded possibilities
here, a change has been made to allow an application to select some ANE
functions that will then be run on the main thread rather than on the runtime
thread.

To configure this, the fully qualified function class name is required (which
can generally be seen in the call stack for a “run on UI thread” failure – the
class name will have “.call” after it which is the FREFunction override that is
called by AIR). A file (empty/tiny) needs to be created and packaged in the
base of the application (so, generally, alongside the main SWF file) that has
the exact same name as the class name. During function registration, the
runtime checks for such files and if found, the functions will be called via a
separate mechanism to run in the UI thread whilst the runtime waits for the
result.

Reference: Github-2409: https://github.com/airsdk/Adobe-Runtime-Support/issues/2409

https://github.com/airsdk/Adobe-Runtime-Support/issues/1984
https://github.com/airsdk/Adobe-Runtime-Support/issues/2326
https://github.com/airsdk/Adobe-Runtime-Support/issues/2409

Public 18(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Title: Removing tvOS invalid reference

Applies to: iOS runtime components

Description: AppleTV applications were crashing at start-up with an undefined symbol.
This symbol should be present in AppleTV OS according to the
documentation but its use has been removed, at least temporarily, to try to
work around this runtime failure.

Reference: Github-2486: https://github.com/airsdk/Adobe-Runtime-Support/issues/2486

Title: Ensuring only one maximize event is sent on macOS

Applies to: MacOS runtime components

Description: When a window was maximised on macOS, there were sometimes two
events being sent – an additional, initial event was sent due to the
reconfiguration of the window into the larger area, but then some core code
was also triggering a repeat of the event. This has been adjusted so that
during one operation, only one event can be sent.

Reference: Github-2517: https://github.com/airsdk/Adobe-Runtime-Support/issues/2517

Title: Check for intent handling before requesting SAF file
permissions

Applies to: Android runtime components

Description: One issue was reported where the Android system reported that it could not
find an intent for a file permission request (on Chromecast platforms?) – this
situation was not being handled properly resulting in a lack of response back
to the AS3 code, so there is now a check being made for the availability of
the intent handler, with a fallback to the earlier permission behaviour in case
no intent can be found.

Reference: Github-2532: https://github.com/airsdk/Adobe-Runtime-Support/issues/2532

Title: Fixing argumenterror thrown when closing a window after
StageWebView.dispose() call

Applies to: All runtime components

https://github.com/airsdk/Adobe-Runtime-Support/issues/2486
https://github.com/airsdk/Adobe-Runtime-Support/issues/2517
https://github.com/airsdk/Adobe-Runtime-Support/issues/2532

Public 19(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: One of the recent changes to ensuring StageWebView objects could be
moved between windows meant that a listener was added into the
StageWebView object itself, checking for when the window on which it was
placed was being closed down. However, the checks in here were then
throwing an exception if the ‘dispose’ method had been called; to prevent
this, the event listeners are now removed manually when the object is
disposed rather than waiting for garbage collection.

Reference: Github-2533: https://github.com/airsdk/Adobe-Runtime-Support/issues/2533

Title: Attempting to resolve Android content files and launch in
default app; Updating Android file handling functions to use
Java to fix permission issues; Correcting File.resolvePath()
for Android content URLs

Applies to: Android runtime components

Description: A number of changes have been made to how the Android code handles file
requests using ‘content://’ URIs. One of the recent changes had called a
Java API from within C++ but without the normal version checking which
caused problems for apps running on old Android versions (KitKat). There
were also problems with how “File.resolvePath()” worked when using
“content://” URIs, plus other fixes have been made.

There may still be some issues to be corrected here, but it is also worth
noting that newer Android versions will not allow the same level of file
system access that had been possible in the past, so applications should use
the filesystem within the expected approach that Android are promoting. For
more information see section 4.4.

Reference: Github-2547: https://github.com/airsdk/Adobe-Runtime-Support/issues/2547

Title: Ensure StateChange Events are sent for maximise events on
Linux even if the window has already been resized.

Applies to: Linux runtime components

Description: There were some conditions when a window was being maximised on Linux
where the AS3 StateChange event was not being dispatched. This has been
updated to ensure more consistency between the activity and the event
handling across the platforms.

https://github.com/airsdk/Adobe-Runtime-Support/issues/2533
https://github.com/airsdk/Adobe-Runtime-Support/issues/2547

Public 20(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

4 Android builds
4.1 AAB Target

Google introduced a new format for packaging up the necessary files and resources for an application
intended for uploading to the Play Store, called the Android App Bundle. Information on this can be
found at https://developer.android.com/guide/app-bundle

AIR now supports the App Bundle by creating an Android Studio project folder structure and using
Gradle to build this. It requires an Android SDK to be present and for the path to this to be passed in
to ADT via the “-platformsdk” option (or set via a config file – it also checks in the default SDK
download location). It also needs to have a JDK present and available, and will attempt to find this
either from configuration files or via the JAVA_HOME environment variable (or if there is an Android
Studio installation present in the default location, using the JDK provided by that).

To generate an Android App Bundle file, the ADT syntax is similar to the “apk” usage:

adt -package -target aab <signing options> output.aab <app descriptor and files> [-extdir
<folder>] -platformsdk <path_to_android_sdk>

No “-arch” option can be provided, as the tool will automatically include all of the architecture types.
Signing options are optional for an App Bundle.

Note that the creation of an Android App Bundle involves a few steps and can take significantly longer
than creating an APK file. We recommend that APK generation is still used during development and
testing, and the AAB output can be used when packaging up an application for upload to the Play
Store.

ADT allows an AAB file to be installed onto a handset using the “-installApp” command, which
wraps up the necessary bundletool commands that generate an APKS file (that contains a set of APK
files suitable for a particular device) and then installs it. If developers want to do this manually,
instructions for this are available at https://developer.android.com/studio/command-
line/bundletool#deploy_with_bundletool, essentially the below lines can be used:

java -jar bundletool.jar build-apks --bundle output.aab --output output.apks --connected-
device

java -jar bundletool.jar install-apks --apks=output.apks

Note that the APK generation here will use a default/debug keystore; additional command-line
parameters can be used if the output APK needs to be signed with a particular certificate.

4.2 Play Asset Delivery

As part of an App Bundle, developers can create ”asset packs” that are delivered to devices
separately from the main application, via the Play Store. For information on these, please refer to the
below link:

https://developer.android.com/guide/playcore/asset-delivery

In order to create asset packs, the application XML file needs to be modified within the <android>
section, to list the asset packs and their delivery mechanism, and to tell ADT which of the files/folders
being packaged should be put into which asset pack.

For example:
<assetPacks>

https://developer.android.com/guide/app-bundle
https://developer.android.com/studio/command-line/bundletool#deploy_with_bundletool
https://developer.android.com/studio/command-line/bundletool#deploy_with_bundletool
https://developer.android.com/guide/playcore/asset-delivery

Public 21(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

 <assetPack id="ImageAssetPack" delivery="on-demand"
folder="AP_Images"/>

</assetPacks>

This instruction would mean that any file found in the ”AP_Images” folder would be redirected into an
asset pack with a name ”ImageAssetPack”. The delivery mechanisms can be ”on-demand”, ”fast-
follow” or ”install-time” per the Android specifications.

Note that assets should be placed directly into the asset pack folder as required, rather than adding
an additional ”src/main/assets” folder structure that the Android documentation requires. This folder
structure is created automatically by ADT during the creation of the Android App Bundle.

The asset pack folder needs to be provided as a normal part of the command line for the files that
should be included in a package. So for example if the asset pack folder was ”AP_Images” and this
was located in the root folder of your project, the command line would be:
adt -package -target aab MyBundle.aab application.xml MyApp.swf AP_Images
[then other files, -platformsdk directive, etc]

If there were a number of asset packs and all of the relevant folders were found under an
”AssetPacks” folder in the root of the project, the command line would be:
adt -package -target aab MyBundle.aab application.xml MyApp.swf -C
AssetsPacks . [then other files, -platformsdk directive, etc]

To access the asset packs via the Android Asset Pack Manager functionality, an ANE is available via
the AIR Package Manager tool. See https://github.com/airsdk/ANE-PlayAssetDelivery/wiki

4.3 Android Text Rendering

Previously, the rendering of text on Android had been handled via a native library built into the C++-
based AIR runtime file. This had some restrictions and issues with handling fonts, which caused major
problems with Android 12 when the font fallback mechanism was changed and the native code no
longer coped with this. To resovle this, a new text rendering mechanism has been implemented that
uses public Android APIs in order to set up the fonts and to render the text.

The new mechanism uses JNI to communicate between the AIR runtime and the Android graphics
classes for this, and has some differences with the legacy version. One of the changes that has been
made is to correct the display of non-colorized text elements when rendering to bitmap data: in earlier
builds, if some text included an emoji with a fixed color (e.g. ”flames” that are always yellow/orange
even if you request a green font color) then these characters appeared blue, due to the different pixel
formats used by Android vs the AIR BitmapData objects. With the new mechanism, AIR correctly
renders these characters to BitmapData (although the problem still remains when rendering device
text to a ’direct’ mode display list).

Some developers may not want to switch to this new mechanism yet, and others may want their
applications to always use it. Some would perhaps want it only when absolutely necessary i.e. from
Android 12 onwards. To cope with this request, there is a new application descriptor setting that can
be used: ”<newFontRenderingFromAPI>” which shoudl be placed within the <android> section of the
descriptor XML. The property of this can be used to set the API version on which the new rendering
mechanism takes place. The default value is API level 31 which corresponds to Android 12.0 (see
https://source.android.com/setup/start/build-numbers). So for example if you always want devices to
use the new mechanism, you can add:

<newFontRenderingFromAPI>0</newFontRenderingFromAPI>

whereas if you never want devices to use this, you could add:
<newFontRenderingFromAPI>99999</newFontRenderingFromAPI>

https://github.com/airsdk/ANE-PlayAssetDelivery/wiki
https://source.android.com/setup/start/build-numbers

Public 22(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

4.4 Android File System Access

In the earlier versions of Android, it was possible to use the filesystem in a similar way to a Linux
computer, but with a set of restrictions that had a fairly high-level granularity:

- It was possible to read/write to an application’s private storage location. AIR exposes this via
”File.applicationStorageDirectory”.

- If the app requested the ’read/write storage’ permission, the app could then read and write in
the user’s shared storage location and to removable storage. The main home folder was
accessible via ”File.userDirectory” or ”File.documentsDirectory”, and later AIR
33.1 added ”File.applicationRemovableStorageDirectory”.

- Later, this was updated such that the user had to also grant permission via a system pop-up
message. To trigger this pop-up, AIR developers could use ”File.requestPermission()”

With the introduction of “scoped storage” however, a lot of this has changed. Android files are treated
in a similar way to other resources, with URLs using the “content://” schema which can refer either to
filesystem-backed files, or to transient resources, or elements within other storage mechanisms such
as databases and libraries. Permission to access each resource depends upon the creator of that
resource, and by default it’s not possible for an application to open a file that another application had
created. Permissions for the top-level internal storage (i.e. “File.documentsDirectory”) have
been changed so that applications cannot create entries here but must use sub-folders of these (a set
of standard sub-folders is generally created by the OS).

Within AIR, we have been attempting to add support for the “content://” URIs, and to switch the File
class “browseForXXX” functions so that they use the new intent-based mechanisms for selecting
files to open and save, or to select a folder. Within these calls, we are also requesting the appropriate
read/write permissions (and persisting these so that they can be used in the future). This means that it
should be possible to call “browseForOpen()” and allow the user to select a shared file that can
then always be opened (for reading). Equally a “browseForDirectory()” call should mean that an
application then has read/write access into the selected directory and its sub-tree.

Requesting file system permissions has to be handled in a similar way, with permissions either
granted for a file or for a folder tree. The “File.requestPermission()” function therefore looks at
the native path of the File object this is called on, and decides whether to show a file open intent (if
there’s a normal path or URL in the nativePath property), or to show a folder selection intent (if the
path ends in a forward-slash), or whether to just ignore the call with a ‘granted’ response and then
wait for later permission requests for individual files (if the File object has not had a nativePath set).
This last option is intended to allow apps to work across different Android versions and is the
recommended option: early in the application lifecycle, create a new File and call
requestPermissions(): if the app is running on an earlier Android version, the permission pop-up
will appear, otherwise the app will need to request specific file access later on via the
“browseForXXX” functions or by requesting permission for a specific file. Sadly it isn’t possible to
ensure that the user only gives a yes/no response for these file/folder open intents, they are able to
browse for other files, so it may be that the file the user selects is not the one you are trying to open. If
this is detected, the permission status event will show as ‘denied’, so if you are happy for the user to
choose a different file, use “browseForOpen()” rather than “requestPermission()”.

Public 23(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

5 Windows builds
The SDK now includes support for Windows platforms, 32-bit and 64-bit. We recommend that
developers use the “bundle” option to create an output folder that contains the target application. This
needs to be packaged up using a third party installer mechanism, in order to provide something that
can be easily distributed to and installed by end users. HARMAN are looking at adapting the previous
AIR installer so that it would be possible for the AIR Developer Tool to perform this step, i.e. allowing
developers to create installation MSI files for Windows apps in a single step.

Instructions for creating bundle packages are at:

https://help.adobe.com/en_US/air/build/WSfffb011ac560372f709e16db131e43659b9-8000.html

Note that 64-bit applications can be created using the “-arch x64” command-line option, to be added
following the “-target bundle” option.

https://help.adobe.com/en_US/air/build/WSfffb011ac560372f709e16db131e43659b9-8000.html

Public 24(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

6 MacOS builds
MacOS builds are provided only as 64-bit versions. A limited shared runtime option is being prepared
so that existing AIR applications can be used on Catalina, but the expectation for new/updated
applications is to also use the “bundle” option to distribute the runtime along with the application, as
per the above Windows section.

Note that Adobe’s AIR 32 SDK can be used on Catalina if the SDK is taken out of ‘quarantine’ status.
For instructions please see an online guide such as:

https://www.soccertutor.com/tacticsmanager/Resolve-Adobe-AIR-Error-on-MacOS-Catalina.pdf

AIR SDK now supports MacOS Big Sur including on the new ARM-based M1 hardware: applications
will be generated with ‘universal binaries’ and most of the SDK tools are now likewise built as
universal apps.

https://www.soccertutor.com/tacticsmanager/Resolve-Adobe-AIR-Error-on-MacOS-Catalina.pdf

Public 25(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

7 iOS support
For deployment of AIR apps on iOS devices, the AIR Developer Tool will use the provided tools to
extract the ActionScript Byte Code from the SWF files, and compile this into machine code that is then
linked with the AIR runtime and embedded into the IPA file. The process of ahead-of-time compilation
depends upon a utility that has to run with the same processor address size as the target architecture:
hence to generate a 32-bit output file, it needs to run a 32-bit compilation process. This causes a
problem on MacOS Catalina where 32-bit binaries will not run.

Additionally, due to the generation of stub files from the iPhone SDK that are used in the linking
process – which are created in a similar, platform-specific way – it is not possible to create armv7-
based stub files when using Catalina or later. From release 33.1.1.620, the stub files are based on
iOS15 and are purely 64-bit. This means that no 32-bit IPAs can be generated, even when running on
older macOS versions or on Windows.

Public 26(26)
ADOBE AIR SDK RELEASE NOTES Version 50.2.2.3

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

8 Splash Screens
For our ‘free tier’ users, a splash screen is injected into the start-up of the AIR process, displaying the
HARMAN and AIR logos for around 2 seconds whilst the start-up continues in the background. There
are different mechanisms used for this on different platforms, the current systems are described
below.

8.1 Desktop (Windows/macOS)

Splash screens are displayed in a separate window centred on the main display, while the start-up
continues behind these. The processing of ActionScript is delayed until after the splash screen has
been removed.

8.2 Android

The splash screen is displayed during start-up and happens immediately the runtime library has been
loaded. After a slight delay the initial SWF file is loaded in and when processing for this starts, the
splash screen is removed.

8.3 iOS

The splash screen is implemented as a launch storyboard with the binary storyboard and related
assets included in the SDK. This has implications for those who are providing their own storyboards or
images in an Assets.car file:

- If you are on the ‘free tier’ then the AIR developer tool will ignore any launch storyboard you
have specified within your application descriptor file, or provided within the file set for
packaging into the IPA file.

- If you are creating an Assets.car file, then you need to add in the AIR splash images from the
SDK which are in the “lib/aot/res” folder. These should be copied and pasted into your
“.xcassets” folder in the Xcode project that you are using for creation of your assets.

Troubleshooting:

Message from ADT: “Warning: free tier version of AIR SDK will use the HARMAN launch
storyboard” – this will be displayed if a <UILaunchStoryboardName> tag has been added via the
AIR application descriptor file. The tag will be ignored and the Storyboard from the SDK will be used
instead.

Message from ADT: “Warning: removing user-included storyboard "[name]"” will be displayed
if there was a Storyboardc file that had been included in the list of files to package: this will be
removed.

Message from ADT: "Warning: free tier version of AIR SDK must use the HARMAN launch
storyboard" – this will be displayed if the Storyboardc file in the SDK has been replaced by a user-
generated one.

If a white screen is shown during start-up: check that the HARMAN splash images are included in
your assets.car file. Note that the runtime may shut down if it doesn’t detect the appropriate splash
images.

The runtime may also shut down for customers with a commercial license if a storyboard has been
specified within the AIR descriptor file but not added via the list of files to package into the IPA file.

	1 Release Overview
	1.1 Key changes
	1.2 Deployment
	1.3 Limitations
	1.4 Feedback
	1.5 Notes

	2 Release Information
	2.1 Delivery Method
	2.2 The Content of the Release
	2.2.1 Detailed SW Content of the Release
	2.2.2 Delivered Documentation
	2.2.3 Build Environment

	2.3 AIR for Linux – Restrictions
	2.4 AIR for Flex users

	3 Summary of changes
	3.1 Runtime and namespace version
	3.2 Build Tools
	3.3 AS3 APIs
	3.4 Features
	3.5 Bug Fixes
	3.5.1 Release 50.2.2.1
	3.5.2 Release 50.2.2.2
	3.5.3 Release 50.2.2.3

	4 Android builds
	4.1 AAB Target
	4.2 Play Asset Delivery
	4.3 Android Text Rendering
	4.4 Android File System Access

	5 Windows builds
	6 MacOS builds
	7 iOS support
	8 Splash Screens
	8.1 Desktop (Windows/macOS)
	8.2 Android
	8.3 iOS

