

Public 1(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Adobe AIR SDK Release Notes

Version 50.2.3.8
Date 7 November 2023
Document ID HCS19-000287
Owner Andrew Frost

Public 2(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Table of contents
1 Release Overview ...3
1.1 Key changes ...3
1.2 Deployment ..4
1.3 Limitations ..4
1.4 Feedback ..4
1.5 Notes ..5

2 Release Information ...6
2.1 Delivery Method ...6
2.2 The Content of the Release ...6
2.3 AIR for Linux – Restrictions ...7
2.4 AIR for Flex users ..7

3 Summary of changes ...9
3.1 Runtime and namespace version ..9
3.2 Build Tools ..9
3.3 AS3 APIs ..9
3.4 Features ...9
3.5 Bug Fixes... 10

4 Android builds ... 28
4.1 AAB Target .. 28
4.2 Play Asset Delivery ... 28
4.3 Android Text Rendering .. 29
4.4 Android File System Access ... 30

5 Windows builds ... 32

6 MacOS builds... 33

7 iOS support .. 34

8 Splash Screens ... 35
8.1 Desktop (Windows/macOS) .. 35
8.2 Android .. 35
8.3 iOS ... 35

Public 3(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

1 Release Overview
Release 50.2.3.1 of the AIR SDK is a feature update – a number of new features have been added
and bugs have been fixed, although nothing that requires a change to the AIR namespace values or
SWF version codes.

Release 50.2.3.2 has been provided due to an issue with the Linux runtime in 50.2.3.1. This had been
built with a new/updated build environment, but resulted in a strange instability. Having reverted back
to the older build environment, this instability appears to be resolved. Further investigations will be
needed to determine the root cause but for now, we will continue to use the older build environment
for Linux.

Note that this update is only for Linux, other platforms will continue to show as version 50.2.3.1.

Release 50.2.3.3 fixes a number of bugs; updates relating to this are in an olive green font.

Release 50.2.3.4 provides a few further fixes for Android; updates relating to this are in a blue font.

Release 50.2.3.5 updates the Android runtimes with a number of bug fixes, and also has a significant
set of updates in the core tools (ADT) to improve the packaging of IPA files. The Windows runtimes
have also been updated with a fix for video playback. Updates relating to this release are in an orange
font.

Release 50.2.3.6 is primarily an update for the ADT packaging application, to correct a number of
issues that have arisen with recent updates of this and of the iOS libraries and tools. Updates relating
to this release are in a purple font.

Release 50.2.3.7 is solely for Android to revert the changes that had caused activate/deactivate
events to be triggered on any loss of focus of the built-in AIR activity. A few other bug fixes have been
included for the Android runtimes. Updates relating to this release are in a light green font.

Release 50.2.3.8 updates the linker tools for IPA linking, to ensure apps are built with this rather than
the older Adobe or newer Apple linkers. A fix for the AIR ‘ant’ flexTasks.jar file has also been included.
Updates relating to this release are in a dark orange font.

1.1 Key changes

The build platforms have been updated, with Android API levels now set with compile and target API
levels of 33. The Android gradle plug-in version has also been updated, with some other compatibility
changes so that developers can use 7.x or 8.x if required.

A new ‘certificateError’ event has been created that developers can use to handle errors when
connecting a SecureSocket or an URLStream/Loader object to a remote server. This gives the
application the chance to override the default behaviour regarding SSL failures caused by self-signed
certificates and similar issues and to ‘mute’ the dialogs that could otherwise be shown to the user.
Note that currently this has been implemented without any AS3 API updates, however in AIR 51 the
necessary changes will be made to provide the event name within the SecurityEvent class. Feedback
on this feature is welcomed, please use https://github.com/airsdk/Adobe-Runtime-
Support/issues/1453

The new media classes continue to be slowly implemented with support now for audio output of
files/urls on iOS (as well as a/v on Windows output to a NativeWindow). For an example of using this
on Windows, see https://github.com/airsdk/Adobe-Runtime-Support/issues/2503#issuecomment-
1453906011. An example for iOS will be added under https://github.com/airsdk/Adobe-Runtime-
Support/issues/2642. The iOS support is intended to work around the problems seen on iPhone 14

https://github.com/airsdk/Adobe-Runtime-Support/issues/1453
https://github.com/airsdk/Adobe-Runtime-Support/issues/1453
https://github.com/airsdk/Adobe-Runtime-Support/issues/2503#issuecomment-1453906011
https://github.com/airsdk/Adobe-Runtime-Support/issues/2503#issuecomment-1453906011
https://github.com/airsdk/Adobe-Runtime-Support/issues/2642
https://github.com/airsdk/Adobe-Runtime-Support/issues/2642

Public 4(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

devices where screen brightness controls and ambient lighting conditions can have the effect of
adding glitches into audio playback using the SoundChannel mechanism.

There are also a number of minor changes and bug fixes. For details please see section 3.

For updates specific to 50.2.3.3, please see section 3.5.3.

For updates specific to 50.2.3.4, please see section 3.5.4.

For updates specific to 50.2.3.5, please see section 3.5.5.

For updates specific to 50.2.3.6, please see section 3.5.6.

For updates specific to 50.2.3.7, please see section 3.5.7.

For updates specific to 50.2.3.8, please see section 3.5.8.

1.2 Deployment

To obtain the release, it is recommended that developers install the AIR SDK Manager. Whilst the
monolithic zip files will still be available from the https://airsdk.harman.com website, this may be
updated less frequently in the future with only major releases. The goal is for the AIR SDK Manager to
help us publish minor updates/fixes with a quicker cadence without resulting in a large amount of
effort and data downloads.

The AIR SDK Manager is now available from the https://airsdk.dev website, as part of the “getting
started” instructions, or directly from github at: https://github.com/airsdk/airsdkmanager-releases

1.3 Limitations

For macOS users on 10.15+, the SDK may not work properly unless the quarantine setting is
removed from the SDK: $ xattr -d -r com.apple.quarantine /path/to/SDK

Please note that there is no longer support for 32-bit IPA files, all IPAs will use just 64-bit binaries now
so older iPhones/iPads may not be supported.

Android development should now be performed with an installation of Android Studio and the SDK
and build tools, so that the new build mechanism (using Gradle and the Android Gradle Plug-in) can
use the same set-up as Android Studio.

Please note also that AIR applications installed on the latest macOS versions on Apple silicon may be
unable to run. It appears that Apple are applying different security/code-signing requirements on
applications that are running natively as ARM64 based apps: if you encounter this issue, please try
setting the application to launch using Rosetta. See below notes for more information.

1.4 Feedback

Any issues found with the SDK should be reported to adobe.support@harman.com or preferably
raised on https://github.com/airsdk/Adobe-Runtime-Support/issues.

The website for AIR SDK is available at: https://airsdk.harman.com with the developer portal available
under https://airsdk.dev

https://airsdk.harman.com/
https://airsdk.dev/
https://github.com/airsdk/airsdkmanager-releases
mailto:adobe.support@harman.com
https://github.com/airsdk/Adobe-Runtime-Support/issues
https://airsdk.harman.com/
https://airsdk.dev/

Public 5(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

1.5 Notes

Contributors to the https://airsdk.dev website would be very welcomed: this portal is being built up as
the repository of knowledge for AIR and will be taking over from Adobe’s developer websites. At some
point the AS3 documentation will be migrated to this location and this can then be maintained directly
by HARMAN (and/or the community) rather than having AS3 API updates listed within these release
notes.

For developers who are packaging applications for desktop AIR, there is now a shared AIR runtime
that is available for end users to download at https://airsdk.harman.com/runtime. However, we
continue to recommend that applications are packaged up with the captive bundle mechanism to
include the runtime and remove the dependency upon this shared package.

On MacOS in particular, the use of the shared AIR runtime to ‘install’ a .air file will not create a signed
application, hence new MacOS versions may block these from running. To ensure a properly signed
MacOS application is created, the “bundle” option should be used with native code-signing options
(i.e. those appearing after the “-target bundle” option) having a KeychainStore type with the alias
being the full certificate name.

https://airsdk.dev/
https://airsdk.harman.com/runtime

Public 6(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

2 Release Information
2.1 Delivery Method

This release shall be delivered via the AIR SDK website: https://airsdk.harman.com/download

The update will also be available via the AIR SDK Manager. The latest version of this can be
downloaded from https://github.com/airsdk/airsdkmanager-releases/releases.

2.2 The Content of the Release

2.2.1 Detailed SW Content of the Release

Component Name 50.2.3.1 50.2.3.2 50.2.3.3 50.2.3.4 50.2.3.5 50.2.3.6 50.2.3.7 50.2.3.8

Core Tools 2.5.0 2.5.1 2.5.2 2.5.3 2.5.4 2.5.5

AIR Tools 2.0.1 2.0.2

Windows platform
package

2.5.0 2.5.1 2.5.2

MacOS platform package 2.5.0 2.5.1

Linux platform package 2.5.0 2.5.1 2.5.2

Android platform package 2.5.0 2.5.1 2.5.2 2.5.3 2.5.4

iPhone platform package 2.5.0 2.5.1 2.5.2 2.5.3

2.2.2 Delivered Documentation

Title Document Number Version

Adobe AIR SDK Release Notes HCS19-000287 50.2.3

2.2.3 Build Environment

Platform Build Details

Android Target SDK Version: 33

Minimum SDK Version: 16 (ARMv7, x86); 21 (ARMv8, x86_64)

Platform Tools: 28.0.3

Build Tools: 33.0.2

SDK Platform: Android-33

Note – these are the versions we use to build the AIR SDK and runtime,
we also recommend developers match the same ‘target SDK’ version as
here.

iOS iPhoneOS SDK Version: 16.4

iPhoneSimulator SDK Version: 16.4

XCode Version: 14.3

Minimum iOS Target: 11.0

https://airsdk.harman.com/download
https://github.com/airsdk/airsdkmanager-releases/releases

Public 7(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

tvOS tvOS SDK Version: 16.4

tvSimulator SDK Version: 16.4

XCode Version: 14.3

Minimum tvOS Target: 11.0

MacOS MacOS SDK Version: 13.3

XCode Version: 14.3

Minimum macOS Target: 10.15

Windows Visual Studio Version: 14.0.25431.01 Update 3

Linux GCC Version 5.4.0 (Ubuntu 16.04.1)

2.3 AIR for Linux – Restrictions

The AIR SDK now supports some capabilities on Linux platforms. This is only available to developers
with a commercial license to the SDK, and has some restrictions:

- No “shared runtime” support: applications would need to be built as ‘bundle’ packages with
the captive runtimes

- Currently only x86_64 support – ARM64 is planned and potentially 32-bit variants if needed
- Packaging into native installers (“native” target type for .deb or .rpm files) is currently not

working: please create a “bundle” target and use Linux tools to distribute these

The Linux functionality has not been as widely tested and is provided “as-is” – developers are free to
distribute applications built using the SDK, and please report any issues found.

2.4 AIR for Flex users

HARMAN have continued Adobe’s strategy of issuing two AIR SDKs per platform: the first of these
(“AIRSDK_[os].zip”) contains the newer ActionScript compiler and is a full, self-contained SDK for
compiling and packaging AIR applications. The second of these is for combination with the Flex SDK
(“AIRSDK_Flex_[os].zip”) which doesn’t include a number of the files necessary for
ActionScript/MXML compilation. These SDKs should be extracted over the top of an existing, valid
Flex SDK.

The original instructions from Adobe are at https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-
air-sdk-flex-sdk.html but a few alterations to this are needed to Step 4 if running on macOS. For this
platform, the downloaded AIR SDK zip needs to be expanded to a temporary area and then the copy
command needs to copy symbolic links as links rather than resolving them to files. This can be done
using a capital ’R’ rather than lowercase, hence:

cp -Rf /tmp/AIRSDK_Flex_MacOS/* /path-to-empty-FLEXSDK-directory

NOTE when copying an AIR SDK over a previous version, there may be errors relating to
“MainWindow.nib” and “MainWindow-iPad.nib”. These were originally files, and then had been turned
into folders by a version of Xcode. However these should now be files again hence there may well be
problems with overwriting of file types. If you see this error, the best approach is to delete these
files/folders from the target location and then perform the copy/extraction again.

https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-air-sdk-flex-sdk.html
https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-air-sdk-flex-sdk.html

Public 8(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Please note that the config files (air-config.xml, airmobile-config.xml, flex-config.xml) may need to be
updated to support new features and updates in AIR or in dependencies such as ANEs. For example
to ensure the correct SWF version is output, the below line would need to be updated (e.g. to ‘50’ for
AIR 50.x, or ‘44’ for AIR 33.1, etc):
<swf-version>14</swf-version>

Public 9(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

3 Summary of changes
3.1 Runtime and namespace version

Namespace: 50.2

SWF version: 50

The namespace and SWF version updates are made across all platforms and may be used to access
the updated ActionScript APIs that have been introduced with AIR version 50.0. The namespace update
is required for opening any SWF file that’s got a SWF version of 50, or when using any of the new XML
application descriptor flags.

3.2 Build Tools

The Android build tools and platform used to create the AIR runtime files has been updated to
Android-33 with the default target SDK now set to this level in the generated Android manifest files.

Xcode 14.3 and the latest macOS and iphoneOS/tvOS SDKs are now being used to build the AIR
SDK. Please note when the update was made to use Xcode 14.x, the minimum iOS/tvOS target
version was increased to 11.

The Linux build machine has been updated to Ubuntu 20 with a corresponding update to GCC.

The build system for this is on a version of macOS that doesn’t support 32-bit processes hence we
cannot generate the 32-bit versions of the stub files. This means that we can no longer support older
32-bit iPhone/iPad devices.

3.3 AS3 APIs

No changes

3.4 Features

Reference: AIR-6564

Title: AIR Media - basic iOS sound output implementation

Applies to: iOS runtime component

Description: To help work around a problem with the latest iPhones where audio output is
glitching, initial support has been added to play back sounds via the new AIR
media APIs. Example code will be added into the below Github issue:

https://github.com/airsdk/Adobe-Runtime-Support/issues/2642

Currently this is just supported for URLs/file paths, but support for binary
data (embedded MP3s etc) will be added later as will capabilities around
volume and completion events, looping etc.

https://github.com/airsdk/Adobe-Runtime-Support/issues/2642

Public 10(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: Github-1453 https://github.com/airsdk/Adobe-Runtime-Support/issues/1453

Title: Adding certificateError event for secure HTTP/socket
connections

Applies to: All runtime components

Description: If a connection to an HTTPS server, or to a secure socket, indicates that
there is a problem with the server’s certificate, previously the behaviour was
variable: typically for sockets, the connection was abandoned, and for
HTTPS connections, a system dialog was shown to the end user offering
them the option to cancel or continue.

This feature adds a new event type, “certificateError”, that is dispatched
when the runtime encounters such a scenario. If there are no listeners for the
error then the behaviour will continue as it has done in the past. However, if
there is a listener that’s added, the default behaviour is then to cancel the
connection unless the handler calls the “preventDefault()” method on the
error object.

Note that this feature can be considered ‘experimental’ and feedback would
be welcomed. There may be some inconsistencies between platforms due to
the different ways in which the connectivity is handled, and currently there is
no information provided about the reasons or the certificate. Further details
will hopefully be available in a future release of AIR where a custom event
could be added, potentially also with the ability for the event listener to defer
the decision to the end user.

Currently the response needs to be immediate (i.e. when the event handler
exists, the decision has to be made whether to cancel (default) or continue
(preventDefault) the connection). If the application wants to confirm with the
user, there are two choices:

a) Start presenting the user with the option in the application;
meanwhile the connection will be cancelled. If the user selects to
continue, the connection can be re-requested and the user’s
response used to call ‘preventDefault’ in the event handler.

b) The handler could leave the default to cancel the existing connection
but then remove itself as an event handler and re-request the
connection – this means that the original/default behaviour would
occur, i.e. asking the user (for https connections).

3.5 Bug Fixes

3.5.1 Release 50.2.3.1

Reference: AIR-4357

https://github.com/airsdk/Adobe-Runtime-Support/issues/1453

Public 11(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Title: Removing deferred framebuffer clears for Android runtime in
background thread

Applies to: Android runtime component

Description: A number of instabilities had been found when using the Android runtime in a
background there, which were within the “glClear” function. Some logic had
been in place to defer these calls to immediately prior to when they were
required, which may have been causing the instability, so this feature has
been reverted.

Reference: Github-1824 https://github.com/airsdk/Adobe-Runtime-Support/issues/1824

Title: Ensuring AIR apps can run from the root folder of a Windows
drive

Applies to: Windows runtime component

Description: A logical error in handling relative path names had prevented AIR
applications from working properly if they were based at the root of any
Windows drive.

Reference: Github-1856 https://github.com/airsdk/Adobe-Runtime-Support/issues/1856

Title: Fixing URL session closure on macOS for cancelled connections

Applies to: MacOS runtime component

Description: When multiple URL requests were made on macOS but were then cancelled
before they were completed, the resources were not being correctly released
in the operating system and after a while this meant that no new connections
were being set up.

Reference: Github-1871 https://github.com/airsdk/Adobe-Runtime-Support/issues/1871

Title: Further updates to support File.openWithDefaultApplication on
Android

Applies to: Android runtime component

Description: The opening of files using the Android default application has been updated
so that this also handles content URLs and doesn’t require additional
permissions to be included.

https://github.com/airsdk/Adobe-Runtime-Support/issues/1824
https://github.com/airsdk/Adobe-Runtime-Support/issues/1856
https://github.com/airsdk/Adobe-Runtime-Support/issues/1871

Public 12(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: Github-2409 https://github.com/airsdk/Adobe-Runtime-Support/issues/2409

Title: Fixing tvOS stub generation and reverting symbol removals

Applies to: tvOS runtime component

Description: The earlier issues relating to symbols not being found has now been
resolved properly – there was a logic issue in the ‘stub’ generation where the
AppleTVOS SDK files were processed into the library stubs, which had
caused these symbols to be identified as coming from the wrong framework.
This has been corrected and the earlier changes have been reverted to re-
include the use of those symbols.

Reference: Github-2535 https://github.com/airsdk/Adobe-Runtime-Support/issues/2535

Title: Don't Activate on _NET_WM_STATE event if the window is being
hidden

Applies to: Linux runtime component

Description: When a Linux window was being hidden, a state event was being received
that caused the window to be restored again. Additional code logic has been
added to detect this condition and ensure windows are not immediately
restored when they are minimised.

Reference: Github-2603 https://github.com/airsdk/Adobe-Runtime-Support/issues/2603

Title: Ensuring Android file chooser ignores non-mime type filters

Applies to: Android runtime component

Description: With the changes to use the Storage Access Framework, the
‘File.browseForOpen’ method’s file filter now needs to be passed a MIME
type rather than a file extension. This had resulted in a problem when an
invalid filter was passed in (or the default, which resulted in a “*” filter) with
Android then throwing an exception. Any filter strings that do not match the
expected MIME string format are now being ignored.

Reference: Github-2615 https://github.com/airsdk/Adobe-Runtime-Support/issues/2615

Title: Updating Android StageText to work in a background thread

Applies to: Android runtime component

https://github.com/airsdk/Adobe-Runtime-Support/issues/2409
https://github.com/airsdk/Adobe-Runtime-Support/issues/2535
https://github.com/airsdk/Adobe-Runtime-Support/issues/2603
https://github.com/airsdk/Adobe-Runtime-Support/issues/2615

Public 13(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: With the AIR runtime in a background thread, some functionality that caused
view updates was then throwing exceptions because it must run in the UI
thread. This change brings the StageText implementation into line with this,
where the capabilities are updated to have the adding/removing from the
stage now happening asynchronously on the UI thread.

Reference: Github-2655 https://github.com/airsdk/Adobe-Runtime-Support/issues/2655

Title: Fixing the iOS certificate security alert message by moving it
out from async thread

Applies to: iOS runtime component

Description: When the iOS runtime showed a security certificate error, the message being
displayed could be incorrect as the message was being picked up from the
underlying OS which may have had further activities between when the error
occurred vs when the message was presented. The message is now being
cached when it happens in the background thread, and this cached string is
used in the error dialog that is running on the UI thread.

Reference: Github-2660 https://github.com/airsdk/Adobe-Runtime-Support/issues/2660

Title: Ensuring Android platformsdk is picked up properly on cmdline

Applies to: Core build tools

Description: When building for Android, if no Android platform SDK had been provided in
a config file (or found from the default expected path), the command-line’s
“platformsdk” option should have been checked. A code logic error had
prevented this from being properly picked up.

Reference: Github-2665 https://github.com/airsdk/Adobe-Runtime-Support/issues/2665

Title: Removing memory leakage in Worker when sending strings over
MessageChannel

Applies to: All runtime components

Description: Due to earlier changes, an issue had arisen where a string sent between
Workers was resulting in a memory leak with the receiving worker not then
triggering the appropriate garbage collection. This has been updated so that
the strings are collected properly and garbage collection – and Scout metrics
– are all reported correctly.

Reference: Github-2666 https://github.com/airsdk/Adobe-Runtime-Support/issues/2666

https://github.com/airsdk/Adobe-Runtime-Support/issues/2655
https://github.com/airsdk/Adobe-Runtime-Support/issues/2660
https://github.com/airsdk/Adobe-Runtime-Support/issues/2665
https://github.com/airsdk/Adobe-Runtime-Support/issues/2666

Public 14(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Title: Ensuring android CameraUI provider is properly named with air
prefix

Applies to: Android runtime component

Description: The CameraUI provider entry that is generated in Android manifest files was
always including the “air.” prefix, even when the developer options had been
set to not include this in the Android application ID/namespace. This has
been updated so it uses the same logic as the application ID.

Reference: Github-2667 https://github.com/airsdk/Adobe-Runtime-Support/issues/2667

Title: Fixing JNI problems with Android
TimeZone.availableTimeZoneNames

Applies to: Android runtime component

Description: The retrieval of time zone names from Java was causing a problem on older
devices due to the limitations of local JNI variables. The code logic has been
updated to handle these in batches and release the memory between each
batch.

Reference: Github-2670 https://github.com/airsdk/Adobe-Runtime-Support/issues/2670

Title: Ensuring AIR on Android shuts down appropriately on exit()
call

Applies to: Android runtime component

Description: When a call to “exit()” had occurred, there were some asynchronous
activities that resulted in the process being closed prior to callbacks being
triggered by the operating system. This resulted in exceptions being thrown;
the logic has been updated so that the application waits for the Android
lifecycle to be shut down before the main AIR process is terminated.

Reference: Github-2671 https://github.com/airsdk/Adobe-Runtime-Support/issues/2671

Title: Preventing Android JNI-detach crash

Applies to: Android runtime component

Description: Some of the handling to run the Android runtime in a background thread
meant that other Android threads, when calling into the runtime via JNI, were
then being attached and detached. However, some of these threads had
already been attached by the operating system hence calling detach was
then causing problems. Logic to detect whether threads are already attached
has now been added.

https://github.com/airsdk/Adobe-Runtime-Support/issues/2667
https://github.com/airsdk/Adobe-Runtime-Support/issues/2670
https://github.com/airsdk/Adobe-Runtime-Support/issues/2671

Public 15(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: Github-2684 https://github.com/airsdk/Adobe-Runtime-Support/issues/2684

Title: Ensuring command-line platformsdk has priority in ADT

Applies to: Core build tools

Description: Previously, the platform SDK provided in a config file (or auto-detected) was
being used as the preferred value when running an Android APK/AAB build.
This logic change has been made so that priority is instead given to any
command-line value that is passed in.

Reference: Github-2694 https://github.com/airsdk/Adobe-Runtime-Support/issues/2694

Title: Excluding invalid libc++.so files from Gradle builds

Applies to: Android runtime component

Description: The “libc++.so” files that were being provided for Gradle builds are now
being excluded: they weren’t actually binary/library files, but instead just
configuration files that had been used by earlier build mechanisms. They are
no longer required and had been causing errors when Gradle updated a
“strip” warning to an error.

3.5.2 Release 50.2.3.2

Reference: Github-2712 https://github.com/airsdk/Adobe-Runtime-Support/issues/2712

Title: Linux runtime rebuild using earlier GCC version

Applies to: Linux runtime component

Description: The recent build using GCC 9.4 had been causing an instability; to resolve
this, the earlier build environment with an older GCC version is being used.

3.5.3 Release 50.2.3.3

Reference: AIR-6707

Title: Adding support for socket broadcast using DatagramSocket send
to 255.255.255.255

Applies to: All runtime components

https://github.com/airsdk/Adobe-Runtime-Support/issues/2684
https://github.com/airsdk/Adobe-Runtime-Support/issues/2694
https://github.com/airsdk/Adobe-Runtime-Support/issues/2712

Public 16(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: Previously, if you tried sending a socket message to the broadcast address
(255.255.255.255) this was not treated properly as a broadcast message via
the socket options. This is now updated so that a message sent to this
address will be configured properly to broadcast the data.

Reference: AIR-6721

Title: Ensuring videos with 4-channel audio still play (with silence)

Applies to: MacOS runtime component

Description: If a video is played with 4-channel audio, the video does not start playing.
This was caused by a mismatch between the formats used internally for
decoding the audio in the macOS code; to work around this, a change has
been made to detect errors that are returned from the codec where the
channel config has more than 2 channels, and to instead inject silence into
the stream so that the video at least plays, albeit without sound.

Reference: Github-2238 https://github.com/airsdk/Adobe-Runtime-Support/issues/2238

Title: Ensuring the Windows splash screen doesn’t stay topmost when
debugging

Applies to: Windows runtime component

Description: When debugging an application and putting a breakpoint in the main class
constructor, the debugger would break here prior to the splash screen being
dismissed. This left the splash screen – with ‘topmost’ attribute – still on the
screen and unable to be moved/dismissed. A change has been made so that
when a debugger break is hit, any splash screen is then immediately closed
down.

Reference: Github-2409 https://github.com/airsdk/Adobe-Runtime-Support/issues/2409

Title: Updating tvOS stub generation for SDK v16.4

Applies to: iOS runtime component

Description: The earlier issues with missing symbols had been tracked to a problem when
generating the “stub” libraries provided in the AIR SDK. Earlier releases had
missed updating the stubs due to a script error, so these are now available in
their fixed form.

https://github.com/airsdk/Adobe-Runtime-Support/issues/2238
https://github.com/airsdk/Adobe-Runtime-Support/issues/2409

Public 17(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: Github-2667 https://github.com/airsdk/Adobe-Runtime-Support/issues/2667

Title: Optimizing JNI and ensuring clean-up for Android TimeZone
support

Applies to: Android runtime component

Description: Running on older Android devices, the retrieval of a list of timezone strings
had been causing JNI reference limit overflows. The structure of the code
has been adjusted so that it is better optimised to not need so many JNI
calls, and to ensure that local references don’t mount up to cause the crash
issue here.

Reference: Github-2726 https://github.com/airsdk/Adobe-Runtime-Support/issues/2726

Title: Updating AIR runtime installer to use WebView2 on Windows

Applies to: Windows runtime component

Description: The internal SDK tools that used Flex-based HTML user interfaces, such as
the runtime and application installer libraries, are now configured to use the
WebView2 (Edge-based) web rendering rather than the IE-based option.

Reference: Github-2733 https://github.com/airsdk/Adobe-Runtime-Support/issues/2733

Title: Fixing network connection reuse for iOS apps

Applies to: iOS runtime component

Description: An earlier issue with multiple URL stream connections had been found and
fixed on macOS, but this had remained within the iOS codebase (or rather,
had been introduced when the iOS implementation switched over to use the
URLSession based code). This update should fix all associated issues
including problems with parallel connections and with cancelled connections
that had mounted up.

Reference: Github-2758 https://github.com/airsdk/Adobe-Runtime-Support/issues/2758

Title: Updating libSwiftCompat.a to include the necessary definitions
from libswiftCompatibility56.a

Applies to: iOS runtime component

Description: For packaging applications that use Swift-based ANEs, additional libraries
are needed for Swift compatibility symbols. The “libSwiftCompat.a” file that is
provided under the AIR SDK lib/aot/lib folder has now been updated to
include the latest set of these from Xcode 14.3.1.

https://github.com/airsdk/Adobe-Runtime-Support/issues/2667
https://github.com/airsdk/Adobe-Runtime-Support/issues/2726
https://github.com/airsdk/Adobe-Runtime-Support/issues/2733
https://github.com/airsdk/Adobe-Runtime-Support/issues/2758

Public 18(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

3.5.4 Release 50.2.3.4

Reference: Github-2533 https://github.com/airsdk/Adobe-Runtime-Support/issues/2533

Title: Ensuring Android content URIs can be set as File.nativePath
and File.url values

Applies to: Android runtime component

Description: A URI starting with “content://” was causing problems when set as the value
for a File.nativePath property, due to internal parsing of this path as a
relative value. A similar problem resulted in the File.url field not handling
these content URIs properly. The code has been updated to treat these URIs
as special cases, so it should now be possible to use File.url or
File.nativePath for paths starting with “content://” on Android.

Reference: Github-2614 https://github.com/airsdk/Adobe-Runtime-Support/issues/2614

Title: Ensuring ANEs have the native 'dispose' method called when
Workers are present

Applies to: Android runtime component

Description: When multiple Worker objects accessed an ANE, the state value for the
internal extension object was being reset due to how a secondary Worker
was loading in the SWF library definitions. This meant that the lifecycle
functionality then failed, and ‘dispose()’ was no longer called during the
destruction of the ANE.

Note that this may also have been an issue on other platforms; it was
reported on Android and is included in this release, and in future releases it
will automatically be included for the other platforms.

Reference: Github-2770 https://github.com/airsdk/Adobe-Runtime-Support/issues/2770

Title: Ensuring Multitouch.maxTouchPoints returns an appropriate
value on Android

Applies to: Android runtime component

Description: The code to determine the ‘maxTouchPoints’ value was just looking at basic
device capabilities to decide whether there was a touchscreen or not, and
whether the touchscreen had multi-touch capabilities. So the resulting value
was always 0, 1 or 2. An additional check has been added to determine
whether the device has ‘jazz hands’ capabilities – and if so, the
‘maxTouchPoints’ value will return 5 instead.

https://github.com/airsdk/Adobe-Runtime-Support/issues/2533
https://github.com/airsdk/Adobe-Runtime-Support/issues/2614
https://github.com/airsdk/Adobe-Runtime-Support/issues/2770

Public 19(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: Github-2771 https://github.com/airsdk/Adobe-Runtime-Support/issues/2771

Title: FileStream.openAsync wasn't completing when using Android
content URIs

Applies to: Android runtime component

Description: When opening a file that uses a “content://” URI on Android, using the
synchronous ‘FileStream.openAsync’ method for reading the entire file in a
background thread, the ‘complete’ event was never firing. This was caused
by the new internal JNI function to read bytes from the file via the Android
APIs, that had a slightly different behaviour from existing code reading via
the posix APIs, when EOF was reached.

3.5.5 Release 50.2.3.5

Reference: AIR-6707

Title: Setting UDP broadcast settings for *.*.*.255 addresses

Applies to: All runtime components

Description: Rather than requiring just “255.255.255.255” for the address that is used to
set the “broadcast” socket option, this update means that any IPv4 address
that ends with “.255” will be treated as a broadcast, with the appropriate
socket options being set on the low-level socket.

Reference: AIR-6765

Title: Fixing crash in embedded font rendering cache

Applies to: All runtime components

Description: A crash had been reported on Windows with a call stack that showed an
error within the font caching code, an unexpected state had resulted in a null
pointer error. This update protects against the crash with some other stability
checks being added within the same code area.

Reference: AIR-6766

Title: ADT rejects iOS ANEs that don't contain universal binaries

Applies to: Core build tools

https://github.com/airsdk/Adobe-Runtime-Support/issues/2771

Public 20(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: If an ANE contained iOS libraries that just had arm64 ‘thin’ binaries, rather
than universal (armv7 + arm64) binaries, then ADT would throw an error
unless the application descriptor had specified a minimum iOS version of 11
or higher. But, since this is now the minimum version that we support for iOS
– and since we don’t support armv7 outputs either – this check was not
needed and has been removed.

Reference: Github-88 https://github.com/airsdk/Adobe-Runtime-Support/issues/88

Title: Fixing green strip at the bottom of some Windows H.264 videos

Applies to: Windows runtime component

Description: When an H.264 video was played back that had a different display height
from the encoded height, the AIR display wrongly included the additional
encoded height which appeared as a green strip at the bottom of the video.
The code has been corrected so that the display height is sent in to the
rendering code.

Reference: Github-360 https://github.com/airsdk/Adobe-Runtime-Support/issues/360

Title: ADT packaging IPA files – optimizations to reduce the ld64
command line length

Applies to: Core build tools

Description: When packaging IPA files on Windows, with a large number of ANEs,
sometimes the command line for the linker got too long. This update builds
upon previous optimisations and now includes the following changes:

a) All frameworks are extracted into the same folder, to eliminate
multiple “-Fpath” commands

b) All exported symbols are written into a temporary file and passed via
the “-exported_symbols_list” option

c) The code to check for duplicate frameworks has been fixed to cope
with some different mechanisms that had been used

Reference: Github-1607 https://github.com/airsdk/Adobe-Runtime-Support/issues/1607

Title: Correcting Android Context usage of visual contexts when
needed

Applies to: Android runtime component

Description: A number of calls to Android APIs were using the “application context”
whereas they should have been using the “visual context” (i.e. the Activity).
This had caused a problem when running in ‘strict mode’ so these calls have
been updated so that they use the Activity for preference.

https://github.com/airsdk/Adobe-Runtime-Support/issues/88
https://github.com/airsdk/Adobe-Runtime-Support/issues/360
https://github.com/airsdk/Adobe-Runtime-Support/issues/1607

Public 21(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: Github-2754 https://github.com/airsdk/Adobe-Runtime-Support/issues/2754

Title: Updating JNI reference handling/clean-up for Android file
access

Applies to: Android runtime component

Description: A number of JNI related issues had been found with a recent update of the
AIR runtime. These pointed to a problem with too many global JNI object
references. Some changes have been made to reduce the number of global
references that are being held, to cache specific instances across objects.

Reference: Github-2755 https://github.com/airsdk/Adobe-Runtime-Support/issues/2755

Title: Updating descriptor XSD docs for missing icon sizes

Applies to: Core build tools

Description: The XSD specifications for AIR application descriptor files were missing a
number of the icon sizes that are available to AIR applications. This had
caused a problem with an IDE that checked the descriptor file against the
XSD, so these definition documents have been updated.

Reference: Github-2771 https://github.com/airsdk/Adobe-Runtime-Support/issues/2771

Title: Ensuring Android content files can be opened/read
asynchronously

Applies to: Android runtime component

Description: The reading of Android content files had an issue when opening in
asynchronous mode, where this did not cope properly with larger files that
were read in chunks. This has been fixed so that files can now correctly be
read in to AIR in a background thread and made available once the file
reading has completed.

Reference: Github-2772 https://github.com/airsdk/Adobe-Runtime-Support/issues/2772

Title: Ensuring AIR activate/deactivate events are sent on activity
focus events

Applies to: Android runtime component

https://github.com/airsdk/Adobe-Runtime-Support/issues/2754
https://github.com/airsdk/Adobe-Runtime-Support/issues/2755
https://github.com/airsdk/Adobe-Runtime-Support/issues/2771
https://github.com/airsdk/Adobe-Runtime-Support/issues/2772

Public 22(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: Some devices are not sending pause/resume notifications when an
application is in the foreground but then the application chooser display is
brought up (via a button or via the gesture). To be able to correctly pass in
the deactivate event when this happens, AIR is now listening for the change
of topmost activity focus.

Reference: Github-2773 https://github.com/airsdk/Adobe-Runtime-Support/issues/2773

Title: Ensuring AIR Android soft keyboard behaviour matches OS

Applies to: Android runtime component

Description: The soft keyboard in AIR was disabled if the device advertised that it was
attached to a hardware keyboard. However, an Android OS setting should be
able to ensure that the virtual keyboard is shown in addition to the hardware
keyboard, where this is enabled by the user. To match this functionality, AIR
now just requests the soft keyboard to be displayed and leaves it to the OS
to decide whether to ignore this call. Note that software keyboard events
may still be triggered even if no keyboard is displayed, because these are
still received from the OS.

Reference: Github-2777 https://github.com/airsdk/Adobe-Runtime-Support/issues/2777

Title: Dispatch touch events on Android when requested, regardless of
the device touchscreen feature flag

Applies to: Android runtime component

Description: Some devices are not advertising the “touch screen” capability which meant
that AIR would not allow the touch mode to be set, and would not dispatch
touch events. However this setting was not always correct. With this change,
AIR will attempt to honour a request to set the touch input mode to the ‘raw’
touch input, and will then send out appropriate AS3 touch events (although
the ‘max touch points’ value will still be zero, and the supported capabilities
will not report touch as an option).

Reference: Github-2801 https://github.com/airsdk/Adobe-Runtime-Support/issues/2801

Title: Ensuring macOS KeychainStore certificates can be used without
private keys

Applies to: Core build tools

https://github.com/airsdk/Adobe-Runtime-Support/issues/2773
https://github.com/airsdk/Adobe-Runtime-Support/issues/2777
https://github.com/airsdk/Adobe-Runtime-Support/issues/2801

Public 23(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: An update to check for a missing private key, and to throw an error rather
than allow this to be used within the code signer, had then caused an issue
when the signer used the KeychainStore provider in the situations where this
did not have or need a private key. This update changes how the earlier
protection was implemented, so that the scenario works (of using
KeychainStore with an alias of a certificate that may not have a private key).

3.5.6 Release 50.2.3.6

Reference: AIR-6777

Title: ADT must not output the password for the signing key

Applies to: Core build tools

Description: When logging the ADT command-line, we had hidden the ‘storepass’ value
from the logs – but the ‘keypass’ value had not been hidden. This release
corrects this oversight.

Reference: Github-360 https://github.com/airsdk/Adobe-Runtime-Support/issues/360

Title: Fixing packaging of ANE frameworks within subfolders

Applies to: Core build tools

Description: The recent changes to reduce the linker command-line length had had an
unexpected impact where ANE dependent frameworks we added within
subfolders. This has been corrected now so that all frameworks are
extracted into the same folder for inclusion in the linker command.

Reference: Github-2768 https://github.com/airsdk/Adobe-Runtime-Support/issues/2768

Title: Adjusting ADT iOS linker command-line to avoid crash

Applies to: Core build tools

Description: An issue had been found with older iPhoneOS versions (v15 and earlier)
where a crash-on-start-up happened due to symbols being included from
incorrect libraries. This has been corrected by changing the order of the
frameworks that are passed to the Apple linker command-line.

Reference: Github-2768 https://github.com/airsdk/Adobe-Runtime-Support/issues/2768

Title: Updating swift compatibility library to include x86_64 symbols

https://github.com/airsdk/Adobe-Runtime-Support/issues/360
https://github.com/airsdk/Adobe-Runtime-Support/issues/2768
https://github.com/airsdk/Adobe-Runtime-Support/issues/2768

Public 24(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Applies to: iPhone runtime component

Description: The Swift compatibility library (libSwiftCompat.a) that is provided in the SDK
had been included solely with arm64 object files. This archive has been
updated to a fat/universal version that contains both arm64 and x86_64
versions, so that it can be used in device and simulator builds.

Reference: Github-2772 https://github.com/airsdk/Adobe-Runtime-Support/issues/2772

Title: Sending activate/deactivate events based on Android window
focus

Applies to: Core build tools

Description: On some Android devices, the activate/deactivate events weren’t firing when
the device was moved into the “application picker” user interface. To fix this,
the “window focus” event is now being used in addition to the other lifecycle
events, to ensure activate/deactivate events are sent properly.

Note: despite being an Android-specific change, the file that’s updated is
packaged within the ADT java archive.

Reference: Github-2801 https://github.com/airsdk/Adobe-Runtime-Support/issues/2801

Title: Updating certificate/key handling to remove mac keychain
signing failure

Applies to: Core build tools

Description: Handling of code-signing when using a macOS KeychainStore storetype had
missed some cases where a private key was not available from the key
store. This change attempts to continue with the signing process regardless
of the initial state of the inputs, resulting either in a successful signing –
potentially with separate/local information input – or a failure that comes from
within the Java security layer.

Reference: Github-2838 https://github.com/airsdk/Adobe-Runtime-Support/issues/2838

Title: Removing sdk_version and using platform_version for iPhoneOS
SDK

Applies to: Core build tools

Description: The latest Apple linker does not have the “sdk_version” command-line option
any more, so this has been updated to use “platform_version” instead.

Note that there are other issues with the Apple linker from Xcode 15, so it is
better to provide a “platformsdk” option for all iPhoneOS builds now.

https://github.com/airsdk/Adobe-Runtime-Support/issues/2772
https://github.com/airsdk/Adobe-Runtime-Support/issues/2801
https://github.com/airsdk/Adobe-Runtime-Support/issues/2838

Public 25(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

3.5.7 Release 50.2.3.7

Reference: Github-2835 https://github.com/airsdk/Adobe-Runtime-Support/issues/2835

Title: Preventing crash in Android VideoTexture dispose

Applies to: Android runtime component

Description: Where the VideoTexture was being disposed, the Android view element had
been removed from the display but later referenced via JNI which caused a
null pointer exception. Protection has been added to this call.

Reference: Github-2837 https://github.com/airsdk/Adobe-Runtime-Support/issues/2837

Title: Fixing calls to OpenGL for texture set-up to avoid later
failure in VertexBuffer

Applies to: Android runtime component

Description: A parameter error when setting up generic texture rendering caused a
knock-on impact where error checking was later used when uploading vertex
buffer data. These parameters have been corrected, and any outstanding
errors are now cleared prior to the buffer uploads.

Reference: Github-2864 https://github.com/airsdk/Adobe-Runtime-Support/issues/2864

Title: Ensuring Android screen state is known to avoid black-screen

Applies to: Android runtime component

Description: A pause/resume problem had been found to result in a black screen when
focus returned to the Android AIR application after the device had been
locked. On some devices, screen update events were not received in a
paused state hence causing a state machine error; AIR now checks for the
screen state when coming back to resume status.

Reference: Github-2873 https://github.com/airsdk/Adobe-Runtime-Support/issues/2873

Title: Building APK target can use 'all' arch plus the config file to
limit the included ABIs

Applies to: Core build tools

https://github.com/airsdk/Adobe-Runtime-Support/issues/2835
https://github.com/airsdk/Adobe-Runtime-Support/issues/2837
https://github.com/airsdk/Adobe-Runtime-Support/issues/2864
https://github.com/airsdk/Adobe-Runtime-Support/issues/2873

Public 26(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: APK files were always set up to contain a single ABI (CPU architecture); with
this change, it’s possible to have an APK generated by using the “-arch all”
option on the command-line, and to include a list of ABIs within the build
configuration (either using the application descriptor element
“android.buildArchitectures” or the configuration file “DefaultArch” setting,
providing a comma-separated list of ABIs).

Reference: Github- 2879 https://github.com/airsdk/Adobe-Runtime-Support/issues/2879

Title: Reverting github-2772 regarding activate/deactivate events on
Android

Applies to: Core build tools

Description: The recent changes under issue “github-2772” had affected when the
NativeApplication “activate” and “deactivate” events were being sent. This
caused knock-on effects when using some ANEs and checking other
scenarios such as pulling down the status panel. These changes have been
reverted, with a view to dispatching a NativeWindow activate/deactivate
event instead to allow applications to see when a particular window has been
obscured or lost focus (to be added in AIR 51.x)

3.5.8 Release 50.2.3.8

Reference: Github-1443 https://github.com/airsdk/Adobe-Runtime-Support/issues/1443

Title: Ensuring AIR Ant flexTasks.jar file recognises ANEs

Applies to: AIR build tools

Description: The flexTasks library had additional filtering on the input arguments prior to
invoking the AIR compiler, one of these meant that only files with “.swc”
extension were allowed for the “external library” files. This has been updated
to also allow files with the “.ane” extension.

Reference: Github-2873 https://github.com/airsdk/Adobe-Runtime-Support/issues/2873

Title: Ensuring Android multi-abi APKs don’t include unnecessary ANE
libraries

Applies to: Core build tools

Description: When the android.buildArchitectures tag is used to create an APK file
containing a sub-set of CPU ABIs, any Android ANE that used native
libraries (.so files) was being included in its entirety. This update filters out
the unnecessary CPU architectures so that the package is smaller and more
consistent.

https://github.com/airsdk/Adobe-Runtime-Support/issues/2879
https://github.com/airsdk/Adobe-Runtime-Support/issues/1443
https://github.com/airsdk/Adobe-Runtime-Support/issues/2873

Public 27(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: Github-2885 https://github.com/airsdk/Adobe-Runtime-Support/issues/2885

Title: Updating IPA linker (LLVM based) to mimic Apple’s LD64
behaviour

Applies to: iOS runtime component

Description: The initial LLVM linker build was having problems with some frameworks due
to the ways in which Apple’s object files are created. The changes here are
to cope with these issues in a behaviour more similar to the original LD64
linker from Apple, with errors being downgraded to warnings.

https://github.com/airsdk/Adobe-Runtime-Support/issues/2885

Public 28(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

4 Android builds
4.1 AAB Target

Google introduced a new format for packaging up the necessary files and resources for an application
intended for uploading to the Play Store, called the Android App Bundle. Information on this can be
found at https://developer.android.com/guide/app-bundle

AIR now supports the App Bundle by creating an Android Studio project folder structure and using
Gradle to build this. It requires an Android SDK to be present and for the path to this to be passed in
to ADT via the “-platformsdk” option (or set via a config file – it also checks in the default SDK
download location). It also needs to have a JDK present and available, and will attempt to find this
either from configuration files or via the JAVA_HOME environment variable (or if there is an Android
Studio installation present in the default location, using the JDK provided by that).

To generate an Android App Bundle file, the ADT syntax is similar to the “apk” usage:

adt -package -target aab <signing options> output.aab <app descriptor and files> [-extdir
<folder>] -platformsdk <path_to_android_sdk>

No “-arch” option can be provided, as the tool will automatically include all of the architecture types.
Signing options are optional for an App Bundle.

Note that the creation of an Android App Bundle involves a few steps and can take significantly longer
than creating an APK file. We recommend that APK generation is still used during development and
testing, and the AAB output can be used when packaging up an application for upload to the Play
Store.

ADT allows an AAB file to be installed onto a handset using the “-installApp” command, which
wraps up the necessary bundletool commands that generate an APKS file (that contains a set of APK
files suitable for a particular device) and then installs it. If developers want to do this manually,
instructions for this are available at https://developer.android.com/studio/command-
line/bundletool#deploy_with_bundletool, essentially the below lines can be used:

java -jar bundletool.jar build-apks --bundle output.aab --output output.apks --connected-
device

java -jar bundletool.jar install-apks --apks=output.apks

Note that the APK generation here will use a default/debug keystore; additional command-line
parameters can be used if the output APK needs to be signed with a particular certificate.

4.2 Play Asset Delivery

As part of an App Bundle, developers can create ”asset packs” that are delivered to devices
separately from the main application, via the Play Store. For information on these, please refer to the
below link:

https://developer.android.com/guide/playcore/asset-delivery

In order to create asset packs, the application XML file needs to be modified within the <android>
section, to list the asset packs and their delivery mechanism, and to tell ADT which of the files/folders
being packaged should be put into which asset pack.

For example:
<assetPacks>

https://developer.android.com/guide/app-bundle
https://developer.android.com/studio/command-line/bundletool#deploy_with_bundletool
https://developer.android.com/studio/command-line/bundletool#deploy_with_bundletool
https://developer.android.com/guide/playcore/asset-delivery

Public 29(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

 <assetPack id="ImageAssetPack" delivery="on-demand"
folder="AP_Images"/>

</assetPacks>

This instruction would mean that any file found in the ”AP_Images” folder would be redirected into an
asset pack with a name ”ImageAssetPack”. The delivery mechanisms can be ”on-demand”, ”fast-
follow” or ”install-time” per the Android specifications.

Note that assets should be placed directly into the asset pack folder as required, rather than adding
an additional ”src/main/assets” folder structure that the Android documentation requires. This folder
structure is created automatically by ADT during the creation of the Android App Bundle.

The asset pack folder needs to be provided as a normal part of the command line for the files that
should be included in a package. So for example if the asset pack folder was ”AP_Images” and this
was located in the root folder of your project, the command line would be:
adt -package -target aab MyBundle.aab application.xml MyApp.swf AP_Images
[then other files, -platformsdk directive, etc]

If there were a number of asset packs and all of the relevant folders were found under an
”AssetPacks” folder in the root of the project, the command line would be:
adt -package -target aab MyBundle.aab application.xml MyApp.swf -C
AssetsPacks . [then other files, -platformsdk directive, etc]

To access the asset packs via the Android Asset Pack Manager functionality, an ANE is available via
the AIR Package Manager tool. See https://github.com/airsdk/ANE-PlayAssetDelivery/wiki

4.3 Android Text Rendering

Previously, the rendering of text on Android had been handled via a native library built into the C++-
based AIR runtime file. This had some restrictions and issues with handling fonts, which caused major
problems with Android 12 when the font fallback mechanism was changed and the native code no
longer coped with this. To resovle this, a new text rendering mechanism has been implemented that
uses public Android APIs in order to set up the fonts and to render the text.

The new mechanism uses JNI to communicate between the AIR runtime and the Android graphics
classes for this, and has some differences with the legacy version. One of the changes that has been
made is to correct the display of non-colorized text elements when rendering to bitmap data: in earlier
builds, if some text included an emoji with a fixed color (e.g. ”flames” that are always yellow/orange
even if you request a green font color) then these characters appeared blue, due to the different pixel
formats used by Android vs the AIR BitmapData objects. With the new mechanism, AIR correctly
renders these characters to BitmapData (although the problem still remains when rendering device
text to a ’direct’ mode display list).

Some developers may not want to switch to this new mechanism yet, and others may want their
applications to always use it. Some would perhaps want it only when absolutely necessary i.e. from
Android 12 onwards. To cope with this request, there is a new application descriptor setting that can
be used: ”<newFontRenderingFromAPI>” which shoudl be placed within the <android> section of the
descriptor XML. The property of this can be used to set the API version on which the new rendering
mechanism takes place. The default value is API level 31 which corresponds to Android 12.0 (see
https://source.android.com/setup/start/build-numbers). So for example if you always want devices to
use the new mechanism, you can add:

<newFontRenderingFromAPI>0</newFontRenderingFromAPI>

whereas if you never want devices to use this, you could add:
<newFontRenderingFromAPI>99999</newFontRenderingFromAPI>

https://github.com/airsdk/ANE-PlayAssetDelivery/wiki
https://source.android.com/setup/start/build-numbers

Public 30(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

4.4 Android File System Access

In the earlier versions of Android, it was possible to use the filesystem in a similar way to a Linux
computer, but with a set of restrictions that had a fairly high-level granularity:

- It was possible to read/write to an application’s private storage location. AIR exposes this via
”File.applicationStorageDirectory”.

- If the app requested the ’read/write storage’ permission, the app could then read and write in
the user’s shared storage location and to removable storage. The main home folder was
accessible via ”File.userDirectory” or ”File.documentsDirectory”, and later AIR
33.1 added ”File.applicationRemovableStorageDirectory”.

- Later, this was updated such that the user had to also grant permission via a system pop-up
message. To trigger this pop-up, AIR developers could use ”File.requestPermission()”

With the introduction of “scoped storage” however, a lot of this has changed. Android files are treated
in a similar way to other resources, with URLs using the “content://” schema which can refer either to
filesystem-backed files, or to transient resources, or elements within other storage mechanisms such
as databases and libraries. Permission to access each resource depends upon the creator of that
resource, and by default it’s not possible for an application to open a file that another application had
created. Permissions for the top-level internal storage (i.e. “File.documentsDirectory”) have
been changed so that applications cannot create entries here but must use sub-folders of these (a set
of standard sub-folders is generally created by the OS).

Within AIR, we have been attempting to add support for the “content://” URIs, and to switch the File
class “browseForXXX” functions so that they use the new intent-based mechanisms for selecting
files to open and save, or to select a folder. Within these calls, we are also requesting the appropriate
read/write permissions (and persisting these so that they can be used in the future). This means that it
should be possible to call “browseForOpen()” and allow the user to select a shared file that can
then always be opened (for reading). Equally a “browseForDirectory()” call should mean that an
application then has read/write access into the selected directory and its sub-tree.

Requesting file system permissions has to be handled in a similar way, with permissions either
granted for a file or for a folder tree. The “File.requestPermission()” function therefore looks at
the native path of the File object this is called on, and decides whether to show a file open intent (if
there’s a normal path or URL in the nativePath property), or to show a folder selection intent (if the
path ends in a forward-slash), or whether to just ignore the call with a ‘granted’ response and then
wait for later permission requests for individual files (if the File object has not had a nativePath set).
This last option is intended to allow apps to work across different Android versions and is the
recommended option: early in the application lifecycle, create a new File and call
requestPermissions(): if the app is running on an earlier Android version, the permission pop-up
will appear, otherwise the app will need to request specific file access later on via the
“browseForXXX” functions or by requesting permission for a specific file. Sadly it isn’t possible to
ensure that the user only gives a yes/no response for these file/folder open intents, they are able to
browse for other files, so it may be that the file the user selects is not the one you are trying to open. If
this is detected, the permission status event will show as ‘denied’, so if you are happy for the user to
choose a different file, use “browseForOpen()” rather than “requestPermission()”.

There is an exception to having to use scoped storage and the storage access framework, which is if
an application has the “MANAGE_EXTERNAL_FILES” permission. This permission is intended for
utilities such as file manager apps and anti-virus scanners that have a legitimate need to access all
the (shared storage) files on the device, but if an app requests this permission and is submitted to the
Play Store, but doesn’t justify itself, then the submission is likely to be rejected.

Some applications are not distributed via the Play Store though, at which point this permission can be
used to turn the behaviour back to how it used to be in earlier Android versions. The

Public 31(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

“File.requestPermission()” capability has been overridden in the cases where AIR detects this
permission has been requested in the manifest, and it will now display the appropriate dialog to ask
the user to turn on the ‘all files’ access for this app. Once this has been granted (asynchronously), it
would then be possible to create, read and write files and folders including in the root storage device.

Public 32(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

5 Windows builds
The SDK now includes support for Windows platforms, 32-bit and 64-bit. We recommend that
developers use the “bundle” option to create an output folder that contains the target application. This
needs to be packaged up using a third party installer mechanism, in order to provide something that
can be easily distributed to and installed by end users. HARMAN are looking at adapting the previous
AIR installer so that it would be possible for the AIR Developer Tool to perform this step, i.e. allowing
developers to create installation MSI files for Windows apps in a single step.

Instructions for creating bundle packages are at:

https://help.adobe.com/en_US/air/build/WSfffb011ac560372f709e16db131e43659b9-8000.html

Note that 64-bit applications can be created using the “-arch x64” command-line option, to be added
following the “-target bundle” option.

https://help.adobe.com/en_US/air/build/WSfffb011ac560372f709e16db131e43659b9-8000.html

Public 33(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

6 MacOS builds
MacOS builds are provided only as 64-bit versions. A limited shared runtime option is being prepared
so that existing AIR applications can be used on Catalina, but the expectation for new/updated
applications is to also use the “bundle” option to distribute the runtime along with the application, as
per the above Windows section.

Note that Adobe’s AIR 32 SDK can be used on Catalina if the SDK is taken out of ‘quarantine’ status.
For instructions please see an online guide such as:

https://www.soccertutor.com/tacticsmanager/Resolve-Adobe-AIR-Error-on-MacOS-Catalina.pdf

AIR SDK now supports MacOS Big Sur including on the new ARM-based M1 hardware: applications
will be generated with ‘universal binaries’ and most of the SDK tools are now likewise built as
universal apps.

https://www.soccertutor.com/tacticsmanager/Resolve-Adobe-AIR-Error-on-MacOS-Catalina.pdf

Public 34(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

7 iOS support
For deployment of AIR apps on iOS devices, the AIR Developer Tool will use the provided tools to
extract the ActionScript Byte Code from the SWF files, and compile this into machine code that is then
linked with the AIR runtime and embedded into the IPA file. The process of ahead-of-time compilation
depends upon a utility that has to run with the same processor address size as the target architecture:
hence to generate a 32-bit output file, it needs to run a 32-bit compilation process. This causes a
problem on MacOS Catalina where 32-bit binaries will not run.

Additionally, due to the generation of stub files from the iPhone SDK that are used in the linking
process – which are created in a similar, platform-specific way – it is not possible to create armv7-
based stub files when using Catalina or later. From release 33.1.1.620, the stub files are based on
iOS15 and are purely 64-bit. This means that no 32-bit IPAs can be generated, even when running on
older macOS versions or on Windows.

Public 35(35)
ADOBE AIR SDK RELEASE NOTES Version 50.2.3.8

Copyright © 2023 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

8 Splash Screens
For our ‘free tier’ users, a splash screen is injected into the start-up of the AIR process, displaying the
HARMAN and AIR logos for around 2 seconds whilst the start-up continues in the background. There
are different mechanisms used for this on different platforms, the current systems are described
below.

8.1 Desktop (Windows/macOS)

Splash screens are displayed in a separate window centred on the main display, while the start-up
continues behind these. The processing of ActionScript is delayed until after the splash screen has
been removed.

8.2 Android

The splash screen is displayed during start-up and happens immediately the runtime library has been
loaded. After a slight delay the initial SWF file is loaded in and when processing for this starts, the
splash screen is removed.

8.3 iOS

The splash screen is implemented as a launch storyboard with the binary storyboard and related
assets included in the SDK. This has implications for those who are providing their own storyboards or
images in an Assets.car file:

- If you are on the ‘free tier’ then the AIR developer tool will ignore any launch storyboard you
have specified within your application descriptor file, or provided within the file set for
packaging into the IPA file.

- If you are creating an Assets.car file, then you need to add in the AIR splash images from the
SDK which are in the “lib/aot/res” folder. These should be copied and pasted into your
“.xcassets” folder in the Xcode project that you are using for creation of your assets.

Troubleshooting:

Message from ADT: “Warning: free tier version of AIR SDK will use the HARMAN launch
storyboard” – this will be displayed if a <UILaunchStoryboardName> tag has been added via the
AIR application descriptor file. The tag will be ignored and the Storyboard from the SDK will be used
instead.

Message from ADT: “Warning: removing user-included storyboard "[name]"” will be displayed
if there was a Storyboardc file that had been included in the list of files to package: this will be
removed.

Message from ADT: "Warning: free tier version of AIR SDK must use the HARMAN launch
storyboard" – this will be displayed if the Storyboardc file in the SDK has been replaced by a user-
generated one.

If a white screen is shown during start-up: check that the HARMAN splash images are included in
your assets.car file. Note that the runtime may shut down if it doesn’t detect the appropriate splash
images.

The runtime may also shut down for customers with a commercial license if a storyboard has been
specified within the AIR descriptor file but not added via the list of files to package into the IPA file.

	1 Release Overview
	1.1 Key changes
	1.2 Deployment
	1.3 Limitations
	1.4 Feedback
	1.5 Notes

	2 Release Information
	2.1 Delivery Method
	2.2 The Content of the Release
	2.2.1 Detailed SW Content of the Release
	2.2.2 Delivered Documentation
	2.2.3 Build Environment

	2.3 AIR for Linux – Restrictions
	2.4 AIR for Flex users

	3 Summary of changes
	3.1 Runtime and namespace version
	3.2 Build Tools
	3.3 AS3 APIs
	3.4 Features
	3.5 Bug Fixes
	3.5.1 Release 50.2.3.1
	3.5.2 Release 50.2.3.2
	3.5.3 Release 50.2.3.3
	3.5.4 Release 50.2.3.4
	3.5.5 Release 50.2.3.5
	3.5.6 Release 50.2.3.6
	3.5.7 Release 50.2.3.7
	3.5.8 Release 50.2.3.8

	4 Android builds
	4.1 AAB Target
	4.2 Play Asset Delivery
	4.3 Android Text Rendering
	4.4 Android File System Access

	5 Windows builds
	6 MacOS builds
	7 iOS support
	8 Splash Screens
	8.1 Desktop (Windows/macOS)
	8.2 Android
	8.3 iOS

