

Public 1(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Adobe AIR SDK Release Notes

Version 50.2.4.4
Date 9 February 2024
Document ID HCS19-000287
Owner Andrew Frost

Public 2(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Table of contents
1 Release Overview .. 3
1.1 Key changes ... 3
1.2 Deployment ... 3
1.3 Limitations ... 4
1.4 Feedback .. 4
1.5 Notes ... 4

2 Release Information .. 5
2.1 Delivery Method .. 5
2.2 The Content of the Release .. 5
2.3 AIR for Linux – Restrictions ... 6
2.4 AIR for Flex users ... 6

3 Summary of changes .. 8
3.1 Runtime and namespace version .. 8
3.2 Build Tools .. 8
3.3 AS3 APIs ... 8
3.4 Features .. 8
3.5 Bug Fixes .. 9

4 Android builds ... 20
4.1 AAB Target .. 20
4.2 Play Asset Delivery ... 20
4.3 Android Text Rendering .. 21
4.4 Android File System Access .. 22

5 Windows builds ... 24

6 MacOS builds .. 25

7 iOS support .. 26

8 Splash Screens ... 27
8.1 Desktop (Windows/macOS) .. 27
8.2 Android .. 27
8.3 iOS .. 27

Public 3(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

1 Release Overview
Release 50.2.4.1 of the AIR SDK is a feature update – a number of new features have been added
and bugs have been fixed, although nothing that requires a change to the AIR namespace values or
SWF version codes.

Release 50.2.4.2 then adds a number of further important bug fixes for this. For changes specific to
50.2.4.2 please see text in olive green font.

Release 50.2.4.3 is a bug fix update with changes focused around correct packaging of Android
APK/AAB files when using Animate, as well as signing updates for IPA files. For changes specific to
50.2.4.3, please see text in orange font.

Release 50.2.4.4 further fixes bugs including some critical problems caused by recent changes, as
well as improving the handling of the Android “content” URI schemes via the AS3 “File” class. For
changes specific to 50.2.4.4, please see text in light blue font.

1.1 Key changes

The key updates are to build with the latest iPhoneOS, AppleTVOS and macOS SDKs and build tools,
to expose the new APIs and so that applications using these platforms will be recognized by Apple as
having used the appropriate tools and SDKs.

Note that there is still an issue with the linking of iPhone/iPad applications for publishing to the Apple
App Store, where Apple are rejecting binaries that are linked using the LLVM linker that was
incorporated into the previous releases. This new release reverts to using the “classic” Apple LD64
linker on macOS; on Windows, it still uses LLVM which should result in binaries that work but that will
not be accepted by Apple. We are working on cross-compiling the Apple LD64 linker for Windows,
now that they have released the recent updates in their open source build, which should then resolve
this issue.

Some Android updates include fixes around black-screen issues, and the ability to use Stage3D when
running in “gpu” render mode. There are also a number of minor changes and bug fixes. For details
please see section 3.

For bug fixes in 50.2.4.2 please see section 3.5.2.

For bug fixes in 50.2.4.3, please see section 3.5.3.

For bug fixes in 50.2.4.4, please see section 3.5.4.

1.2 Deployment

To obtain the release, it is recommended that developers install the AIR SDK Manager. Whilst the
monolithic zip files will still be available from the https://airsdk.harman.com website, this may be
updated less frequently in the future with only major releases. The goal is for the AIR SDK Manager to
help us publish minor updates/fixes with a quicker cadence without resulting in a large amount of
effort and data downloads.

The AIR SDK Manager is now available from the https://airsdk.dev website, as part of the “getting
started” instructions, or directly from github at: https://github.com/airsdk/airsdkmanager-releases

https://airsdk.harman.com/
https://airsdk.dev/
https://github.com/airsdk/airsdkmanager-releases

Public 4(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

1.3 Limitations

For macOS users on 10.15+, the SDK may not work properly unless the quarantine setting is
removed from the SDK: $ xattr -d -r com.apple.quarantine /path/to/SDK

Please note that there is no longer support for 32-bit IPA files, all IPAs will use just 64-bit binaries now
so older iPhones/iPads may not be supported.

Android development should now be performed with an installation of Android Studio and the SDK
and build tools, so that the new build mechanism (using Gradle and the Android Gradle Plug-in) can
use the same set-up as Android Studio.

1.4 Feedback

Any issues found with the SDK should be reported to adobe.support@harman.com or preferably
raised on https://github.com/airsdk/Adobe-Runtime-Support/issues.

The website for AIR SDK is available at: https://airsdk.harman.com with the developer portal available
under https://airsdk.dev

1.5 Notes

Contributors to the https://airsdk.dev website would be very welcomed: this portal is being built up as
the repository of knowledge for AIR and will be taking over from Adobe’s developer websites. At some
point the AS3 documentation will be migrated to this location and this can then be maintained directly
by HARMAN (and/or the community) rather than having AS3 API updates listed within these release
notes.

For developers who are packaging applications for desktop AIR, there is now a shared AIR runtime
that is available for end users to download at https://airsdk.harman.com/runtime. However, we
continue to recommend that applications are packaged up with the captive bundle mechanism to
include the runtime and remove the dependency upon this shared package.

On MacOS in particular, the use of the shared AIR runtime to ‘install’ a .air file will not create a signed
application, hence new MacOS versions may block these from running. To ensure a properly signed
MacOS application is created, the “bundle” option should be used with native code-signing options
(i.e. those appearing after the “-target bundle” option) having a KeychainStore type with the alias
being the full certificate name.

mailto:adobe.support@harman.com
https://github.com/airsdk/Adobe-Runtime-Support/issues
https://airsdk.harman.com/
https://airsdk.dev/
https://airsdk.dev/
https://airsdk.harman.com/runtime

Public 5(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

2 Release Information
2.1 Delivery Method

This release shall be delivered via the AIR SDK website: https://airsdk.harman.com/download

The update will also be available via the AIR SDK Manager. The latest version of this can be
downloaded from https://github.com/airsdk/airsdkmanager-releases/releases.

2.2 The Content of the Release

2.2.1 Detailed SW Content of the Release

Component Name 50.2.4.1 50.2.4.2 50.2.4.3 50.2.4.4

Core Tools 2.6.0 2.6.1 2.6.2 2.6.3

AIR Tools 2.0.2

Windows platform package 2.6.0 2.6.1 2.6.2 2.6.3

MacOS platform package 2.6.0 2.6.1 2.6.2 2.6.3

Linux platform package 2.6.0 2.6.1 2.6.2 2.6.3

Android platform package 2.6.0 2.6.1 2.6.2 2.6.3

iPhone platform package 2.6.0 2.6.1 2.6.2 2.6.3

2.2.2 Delivered Documentation

Title Document Number Version

Adobe AIR SDK Release Notes HCS19-000287 50.2.4

2.2.3 Build Environment

Platform Build Details

Android Target SDK Version: 33

Minimum SDK Version: 16 (ARMv7, x86); 21 (ARMv8, x86_64)

Platform Tools: 28.0.3

Build Tools: 33.0.2

SDK Platform: Android-33

Note – these are the versions we use to build the AIR SDK and runtime,
we also recommend developers match the same ‘target SDK’ version as
here.

iOS iPhoneOS SDK Version: 17.2

iPhoneSimulator SDK Version: 17.2

XCode Version: 15.2

Minimum iOS Target: 12.0

https://airsdk.harman.com/download
https://github.com/airsdk/airsdkmanager-releases/releases

Public 6(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

tvOS tvOS SDK Version: 17.2

tvSimulator SDK Version: 17.2

XCode Version: 15.2

Minimum tvOS Target: 12.0

MacOS MacOS SDK Version: 14.2

XCode Version: 15.2

Minimum macOS Target: 10.15

Windows Visual Studio Version: 14.0.25431.01 Update 3

Linux GCC Version 5.4.0 (Ubuntu 16.04.1)

2.3 AIR for Linux – Restrictions

The AIR SDK now supports some capabilities on Linux platforms. This is only available to developers
with a commercial license to the SDK, and has some restrictions:

- No “shared runtime” support: applications would need to be built as ‘bundle’ packages with
the captive runtimes

- Currently only x86_64 support – ARM64 is planned and potentially 32-bit variants if needed
- Packaging into native installers (“native” target type for .deb or .rpm files) is currently not

working: please create a “bundle” target and use Linux tools to distribute these

The Linux functionality has not been as widely tested and is provided “as-is” – developers are free to
distribute applications built using the SDK, and please report any issues found.

2.4 AIR for Flex users

HARMAN have continued Adobe’s strategy of issuing two AIR SDKs per platform: the first of these
(“AIRSDK_[os].zip”) contains the newer ActionScript compiler and is a full, self-contained SDK for
compiling and packaging AIR applications. The second of these is for combination with the Flex SDK
(“AIRSDK_Flex_[os].zip”) which doesn’t include a number of the files necessary for
ActionScript/MXML compilation. These SDKs should be extracted over the top of an existing, valid
Flex SDK.

The original instructions from Adobe are at https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-
air-sdk-flex-sdk.html but a few alterations to this are needed to Step 4 if running on macOS. For this
platform, the downloaded AIR SDK zip needs to be expanded to a temporary area and then the copy
command needs to copy symbolic links as links rather than resolving them to files. This can be done
using a capital ’R’ rather than lowercase, hence:

cp -Rf /tmp/AIRSDK_Flex_MacOS/* /path-to-empty-FLEXSDK-directory

NOTE when copying an AIR SDK over a previous version, there may be errors relating to
“MainWindow.nib” and “MainWindow-iPad.nib”. These were originally files, and then had been turned
into folders by a version of Xcode. However these should now be files again hence there may well be
problems with overwriting of file types. If you see this error, the best approach is to delete these
files/folders from the target location and then perform the copy/extraction again.

https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-air-sdk-flex-sdk.html
https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-air-sdk-flex-sdk.html

Public 7(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Please note that the config files (air-config.xml, airmobile-config.xml, flex-config.xml) may need to be
updated to support new features and updates in AIR or in dependencies such as ANEs. For example
to ensure the correct SWF version is output, the below line would need to be updated (e.g. to ‘50’ for
AIR 50.x, or ‘44’ for AIR 33.1, etc):
<swf-version>14</swf-version>

Public 8(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

3 Summary of changes
3.1 Runtime and namespace version

Namespace: 50.2

SWF version: 50

The namespace and SWF version updates are made across all platforms and may be used to access
the updated ActionScript APIs that have been introduced with AIR version 50.0. The namespace update
is required for opening any SWF file that’s got a SWF version of 50, or when using any of the new XML
application descriptor flags.

3.2 Build Tools

The Android build tools and platform used to create the AIR runtime files has been updated to
Android-33 with the default target SDK now set to this level in the generated Android manifest files.

Xcode 15.2 and the latest macOS and iphoneOS/tvOS SDKs are now being used to build the AIR
SDK. Please note when the update was made to use Xcode 15.0, the minimum iOS/tvOS target
version was increased to 12. Additional note: these are the versions that AIR itself is built with. The
versions shown in IPA files are manually injected by ADT and don’t (yet) take the version codes from
the local build environment. See Issue #3030 (github.com).

The build system for this is on a version of macOS that doesn’t support 32-bit processes hence we
cannot generate the 32-bit versions of the stub files. This means that we can no longer support older
32-bit iPhone/iPad devices.

3.3 AS3 APIs

No changes

3.4 Features

Reference: AIR-6707

Title: Setting UDP broadcast settings for *.*.*.255 addresses

Applies to: All runtime components

Description: The earlier update to switch to a ‘broadcast’ mechanism for any address
ending in .255 is now rolled out across all platform binaries.

Reference: AIR-6809

Title: Building on Sonoma/Xcode 15 for iPhoneOS/tvOS/macOS

Applies to: iOS and macOS runtime components

https://github.com/airsdk/Adobe-Runtime-Support/issues/3030

Public 9(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: Updates to the code, build settings and Info.plist configuration files in order
to build against the latest SDKs and to create applications that show as
having been packaged using the latest SDKs and tools.

Reference: Github-2885 https://github.com/airsdk/Adobe-Runtime-Support/issues/2885

Title: Picking up iOS/tvOS platform SDK version from platformsdk path

Applies to: Core build tools

Description: The “target SDK” value used in the linker for IPA files will now be picked up
from the SDK version in the “-platformsdk” path, if present. For example, if a
platform SDK argument is provided that ends with “iPhoneOS16.4.sdk” then
the target SDK argument of 16.4 would be used. The default value is set
within the ADT tool per these release notes (see section 2.2.3).

Reference: Github-2911 https://github.com/airsdk/Adobe-Runtime-Support/issues/2911

Title: Switching IPA linker on macOS to use ld-classic

Applies to: Core build tools

Description: To work around issues with the IPA linking process, on a macOS machine
AIR will now use the Apple ‘classic’ ld64 binary for linking. (On machines
without this binary, it will fall back to the normal ‘ld’ linker, and failing that will
use the LLVM binary that’s provided within the AIR SDK).

3.5 Bug Fixes

3.5.1 Release 50.2.4.1

Reference: Github-1194 https://github.com/airsdk/Adobe-Runtime-Support/issues/1194

Title: Adjusting Android lifecycle handlers to avoid black screen in
Home/Launcher scenario

Applies to: Android runtime component

Description: When using AIR applications as Android Home applications, the OS had
been launching additional activities within the same process; this needed
some updates to lifecycle handling in order to work properly.

https://github.com/airsdk/Adobe-Runtime-Support/issues/2885
https://github.com/airsdk/Adobe-Runtime-Support/issues/2911
https://github.com/airsdk/Adobe-Runtime-Support/issues/1194

Public 10(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: Github-2810 https://github.com/airsdk/Adobe-Runtime-Support/issues/2810

Title: Ensuring AIR copes with UIBackgroundModes being a string as
well as an array

Applies to: iOS runtime component

Description: The UIBackgroundModes value should be an array of strings; however, this
update has been made to protect against a scenario where a single string
was passed in. AIR now handles this as it if were an array of one string.

Reference: Github-2869 https://github.com/airsdk/Adobe-Runtime-Support/issues/2869

Title: Allowing Stage3D contexts to be created in Android gpu
rendering mode

Applies to: Android runtime component

Description: In order to support GPU acceleration of normal displaylist rendering as well
as the Stage3D APIs, a condition has been updated internally so that the
OpenGL ES context used for “gpu” rendering mode on Android can also be
used to kick off a Stage3D context. There may be some limitations in this
mode (particularly a lack of VideoTexture).

Reference: Github-2888 https://github.com/airsdk/Adobe-Runtime-Support/issues/2888

Title: Moving Android planeKickCascade function into UI thread to
avoid exception

Applies to: Android runtime component

Description: When running AIR in a background thread on Android, some issues were
found within a “planeKickCascade” method that should not be called from a
background thread. This function has been switched to run on the UI thread.

Reference: Github-2893 https://github.com/airsdk/Adobe-Runtime-Support/issues/2893

Title: Ensuring BitmapData.decode() works for transparency in PNGs

Applies to: All runtime components

https://github.com/airsdk/Adobe-Runtime-Support/issues/2810
https://github.com/airsdk/Adobe-Runtime-Support/issues/2869
https://github.com/airsdk/Adobe-Runtime-Support/issues/2888
https://github.com/airsdk/Adobe-Runtime-Support/issues/2893

Public 11(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: An error when setting up a BitmapData object internally had meant that
PNGs with transparency were not correctly keeping the transparent colour
when decoded using the new BitmapData.decode() method.

Reference: Github-2923 https://github.com/airsdk/Adobe-Runtime-Support/issues/2923

Title: Updating LLVM LD64.exe to remove MSVC runtime dependencies

Applies to: iOS runtime components

Description: The LLVM build of ld64.exe provided as part of the iOS toolchain on
Windows had been built with an assumption that the appropriate Visual
Studio redistributable libraries were available on the computer. This has
been updated so that the runtime frameworks are built directly into the
executable, which should help the compatibility for this component.

3.5.2 Release 50.2.4.2

Reference: AIR-4740

Title: Remove use of sun.security classes for code signing - replace
with BouncyCastle

Applies to: Core build tools

Description: For code-signing, ADT had been using internal sun security classes which
had been removed from Java 17 onwards. The updates to Adobe Animate
2024 – where they now by default ship with and use the JRE 17 version –
had then meant that macOS builds of IPA files were automatically using
native codesign and Windows builds could not be signed.

We have now gone through to remove the use of those older classes, and
have updated to use the third party “BouncyCastle” library, in order to
perform the same code-signing functionality

Reference: Github-1003 https://github.com/airsdk/Adobe-Runtime-Support/issues/1003

Title: Ensuring Android surface restore copes with different event
ordering

Applies to: Android runtime component

https://github.com/airsdk/Adobe-Runtime-Support/issues/2923
https://github.com/airsdk/Adobe-Runtime-Support/issues/1003

Public 12(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: When an Android app is restored from a background state, the different
events for surface creation and activity resume had been coming in different
orders, that could result in a ‘black screen’ scenario. An initial workaround
that Adobe had targeted for specific devices has now been made more
generic in order to cope with this.

Reference: Github-1199 https://github.com/airsdk/Adobe-Runtime-Support/issues/1199

Title: Adjusting VideoViewAIR to prevent UnsatisfiedLinkError when
calling JNI method too early

Applies to: Android runtime component

Description: It could have been feasible for a video surface creation method to have
called a JNI function prior to that function being registered, when using the
AIR runtime in a background thread. This change attempts to prevent this,
although it seems there may also be other causes of this error.

Reference: Github-2409 https://github.com/airsdk/Adobe-Runtime-Support/issues/2409

Title: Adding missing media symbols into AppleTV runtime libraries

Applies to: iOS runtime component

Description: An earlier change in the iPhoneOS builds had had a side-effect of
AppleTVOS builds then having a missing symbol. The necessary files have
now been included into the tvos runtime build libraries to avoid this.

Reference: Github-2615 https://github.com/airsdk/Adobe-Runtime-Support/issues/2615

Title: Updating Android stagetext/stagewebview functionality to cope
better in background threads

Applies to: Android runtime component

Description: A number of issues with threading and asynchronous access of StageText
and StageWebView objects had been causing problems, particularly during
the destruction of these. Various changes have been made to try to work
around these problems and ensure appropriate locked access from the
different threads.

https://github.com/airsdk/Adobe-Runtime-Support/issues/1199
https://github.com/airsdk/Adobe-Runtime-Support/issues/2409
https://github.com/airsdk/Adobe-Runtime-Support/issues/2615

Public 13(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: Github-2642 https://github.com/airsdk/Adobe-Runtime-Support/issues/2642

Title: Adjusting thread handling for iOS audio to avoid glitching

Applies to: iOS runtime component

Description: For a while we have had glitches in the audio on iPhone 14s and above,
when adaptive brightness has been turned on and particularly when the
device is in a bright environment. This had been tracked down to an iOS
function that suddenly started to take longer to return. To work around this,
the audio output mechanisms have been reworked with additional buffering
and threading to avoid this problem.

Reference: Github-2863 https://github.com/airsdk/Adobe-Runtime-Support/issues/2863

Title: Ensuring ios webviews are inspectable for debug builds

Applies to: iOS runtime component

Description: A change in Apple’s policies had broken the “inspectable” capability for web
views, so this update restores the capability – but only for builds that have a
“debug” capability already (ipa-debug etc).

Reference: Github-2906 https://github.com/airsdk/Adobe-Runtime-Support/issues/2906

Title: Allowing non-latin characters in files for Gradle-based builds
(and using gradle for apk-signing)

Applies to: Core build tools

Description: An internal restriction on resource naming had been preventing non-latin
characters from being used in files, however that restriction was due to the
use of AAPT in earlier build mechanisms. With Gradle builds, no such
restriction is needed so this has been relaxed.

Whilst making this change, it was also noticed that Gradle by default will sign
an APK file using the v2 signature method, which meant that we could
remove our additional code-signing step for these files.

Reference: Github-2924 https://github.com/airsdk/Adobe-Runtime-Support/issues/2924

Title: Fixing Android VideoTexture flicker at start of video playback

https://github.com/airsdk/Adobe-Runtime-Support/issues/2642
https://github.com/airsdk/Adobe-Runtime-Support/issues/2863
https://github.com/airsdk/Adobe-Runtime-Support/issues/2906
https://github.com/airsdk/Adobe-Runtime-Support/issues/2924

Public 14(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Applies to: Android runtime component

Description: In direct mode, if there was a mixture of normal display content plus a
Stage3D VideoTexture, then the texture was somehow displaying a
background image prior to the first frame of the video being displayed. To
avoid this, the start-up/display mechanism has been adjusted to ensure the
video codec output is rendered prior to the first frame, since this seems to
have an ‘initialise to black’ feature.

Reference: Github-2950 https://github.com/airsdk/Adobe-Runtime-Support/issues/2950

Title: Ensuring Android ANE .so libraries are packaged in AAB bundles

Applies to: Core build tools

Description: With a recent change to allow the use of the ‘build configurations’ flag to
control what CPU versions are packaged in APK files, this had a side-effect
that by default meant no .so libraries from Android ANEs were packaged into
AAB files. This change fixes that so that by default, all four CPU variants are
included, with the ‘build configurations’ then being used to fine-tune this as
required.

3.5.3 Release 50.2.4.3

Reference: AIR-6479

Title: Thread protection around credential handling in macOS URL
stream

Applies to: MacOS runtime component

Description: Instabilities were reported in macOS HTTPS handling, which happened
within the handling of credentials for SSH authentication. A change has been
made to remove the potential of a use-after-free scenario that may have
been causing the crash here.

Reference: AIR-6931

Title: Ensure macOS apps installed via AIR shared runtime are always
x64

Applies to: AIR shared runtime for macOS

https://github.com/airsdk/Adobe-Runtime-Support/issues/2950

Public 15(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: Apple’s enhanced security checks mean that an ARM64-based binary,
running on Apple Silicon, needs to be code-signing in order to run. But with
applications that are distributed as .air files, it is not possible to sign these
when they are installed. This change means that applications generated by
the AIR shared runtime, when installing a .air file, will be installed as x64
based applications, which currently gets round the Apple security
requirement.

Reference: AIR-6964

Title: AIR Android manifest additional features should override any
from the template

Applies to: Core build tools

Description: If a ‘uses-feature’ manifest addition is provided in an application descriptor
file, this should override any templated feature that is specified by AIR.
Previously this would have just ended up duplicating the feature, resulting in
an error when building.

Reference: Github-2010 https://github.com/airsdk/Adobe-Runtime-Support/issues/2010

Title: Re-implementing fix to allow Rectangle ..ToOutput methods to
use 'this' as output

Applies to: All runtime components

Description: A fix had been implemented previously to ensure the new “…ToOutput”
geometry methods could handle a scenario where an object is provided as
the output for its own function call. That fix had been lost during an incorrect
documentation update, so has been re-implemented here.

Reference: Github-2625 https://github.com/airsdk/Adobe-Runtime-Support/issues/2625

Title: Updating RTMPS code to accept self-signed certificates

Applies to: All runtime components

Description: The security handling for RTMPS had been rejecting remote servers that had
used self-signed certificates. This change is an interim update to allow the
connections by default: ultimately the goal would be to use the new
‘certificateError’ event to allow developers to have control over this
behaviour.

https://github.com/airsdk/Adobe-Runtime-Support/issues/2010
https://github.com/airsdk/Adobe-Runtime-Support/issues/2625

Public 16(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: Github-2978 https://github.com/airsdk/Adobe-Runtime-Support/issues/2978

Title: Ensuring APK files are code-signed with a release
configuration

Applies to: Core build tools

Description: Release APK files had not been correctly signed following the fixes to handle
code-signing via the Gradle tools rather than the (failing) internal code
signature. This update ensures the provided certificate details are correctly
configured within the Gradle settings for release builds.

Reference: Github-2988 https://github.com/airsdk/Adobe-Runtime-Support/issues/2988

Title: Ensuring URL schemes conforming to RFC3986 are accepted in AIR

Applies to: All runtime components

Description: When the “navigateToURL” method is called, AIR checks that the URL
scheme used is valid. However, the check had been based on an internal
Adobe specification which rejected schemes with a “.” character. This check
has been updated to conform to the standards for scheme definitions.

Reference: Github-2989 https://github.com/airsdk/Adobe-Runtime-Support/issues/2989

Title: Correcting DER-encoding of macho entitlements for IPA code
signature

Applies to: Core build tools

Description: The updated code-signing had been incorrectly wrapping an array of data
from within a macho entitlement into an octet-string. This has been corrected
so that the DER-encoding of the application entitlements now match the
expectation from Apple’s security validation.

Reference: Github-2992 https://github.com/airsdk/Adobe-Runtime-Support/issues/2992

Title: Ensuring AABs built using Animate have all the native
libraries included

Applies to: Core build tools

https://github.com/airsdk/Adobe-Runtime-Support/issues/2978
https://github.com/airsdk/Adobe-Runtime-Support/issues/2988
https://github.com/airsdk/Adobe-Runtime-Support/issues/2989
https://github.com/airsdk/Adobe-Runtime-Support/issues/2992

Public 17(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: When packaging from Animate, their use of the “armv7” command-line
argument when combined with the override for switching from APK to AAB
had resulted in a bundle without the correct native libraries. This update fixes
the generation of bundles to ensure it includes all CPU formats, unless
overridden by the application descriptor file preferences.

Reference: Github-2993 https://github.com/airsdk/Adobe-Runtime-Support/issues/2998

Title: Adding thread-safety to new audio code to avoid segfault

Applies to: iPhoneOS runtime components

Description: The updated audio threads to fix glitching in iPhone audio had been calling a
method to decode from MP3 data which could conflict with the removal of a
sound channel from a different thread. The appropriate critical sections have
been added to avoid this scenario to prevent the crashing.

3.5.4 Release 50.2.4.4

Reference: AIR-6979

Title: AIR JPEG decoding to take account of macOS display colour
profile

Applies to: MacOS runtime component

Description: When a display on macOS was set to a colour profile with a different range
than the standard sRGB palette, colours were being distorted resulting in
high saturation levels. The change here corrects the JPEG decoding to
follow the same mechanism as appears to be used by WebKit/Safari.

Reference: Github-2972 https://github.com/airsdk/Adobe-Runtime-Support/issues/2972

Title: Ensuring correct toplevels are used for user-specified ANEs to
correct delayed-loading

Applies to: All runtime components

Description: When delayed-load is used for ANE libraries, the internal “toplevel” object
had caused a mis-match, resulting in a failure to load in the ANE later on.
With this change, the initial set-up uses the user-space toplevel rather than
the internal one, which means manual loading later on is now working.

https://github.com/airsdk/Adobe-Runtime-Support/issues/2998
https://github.com/airsdk/Adobe-Runtime-Support/issues/2972

Public 18(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: Github-3000 https://github.com/airsdk/Adobe-Runtime-Support/issues/3000

Title: Ensuring Android StageText elements can be re-added to stage

Applies to: Android runtime components

Description: When changing the code to cope with the asynchronous runtime, StageText
objects had ended up with state handling within the “removed from stage”
handler that could result in some later Java exceptions as well as preventing
the StageText element from being re-added to the stage.

Reference: Github-3034 https://github.com/airsdk/Adobe-Runtime-Support/issues/3034

Title: Preventing iPhone WebView crash in debug builds pre-iOS16.4

Applies to: iPhoneOS runtime components

Description: The recent change to make a webview “inspectable” on iOS needed to have
conditional execution flags around it, as the use of this property was causing
a crash on iOS versions before 16.4. As well as this change, the setting
should now take effect for ipa-test target types as well as ipa-debug.

Reference: Github-3043 https://github.com/airsdk/Adobe-Runtime-Support/issues/3043

Title: Updating handling of content URIs and file paths in Android

Applies to: Android runtime components

Description: The handling of “content” URIs in Android has been causing problems for a
while, and the updates here are to improve the handling and behaviour for
File objects that are created when using the Storage Access Framework to
get permissions for a folder, and then using the “resolvePath” mechanisms to
create other File objects that are under this tree.

The mechanism has been updated now so that primarily, an incoming URI
will be checked to see if the OS recognises us as having permissions for it: if
that is the case, then the URI is refactored so that it is based upon this
permitted location. This then appears to ensure the ContentResolver class is
able to handle the URI and knows that the permissions are granted.

A fall-back to a normal ‘file’ based URI has also been added, but should only
be used if the more normal Android mechanism has failed. This file path
detection has limitations and variances depending on the device.

https://github.com/airsdk/Adobe-Runtime-Support/issues/3000
https://github.com/airsdk/Adobe-Runtime-Support/issues/3034
https://github.com/airsdk/Adobe-Runtime-Support/issues/3043

Public 19(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: Github-3046 https://github.com/airsdk/Adobe-Runtime-Support/issues/3046

Title: Fixing null reference error in ADT on Android manifest 'uses-
feature' entry

Applies to: Core build tools

Description: The change to allow a user’s feature requests to override those from the AIR
template made the assumption that a value would always be provided for
whether the feature is required or not. This resulted in a null reference error if
the manifestAddition descriptor left the field blank to pick up the default
value. This change copes with the lack of the ‘required’ attribute and uses
the default ‘true’ if it’s missing.

Reference: Github-3058 https://github.com/airsdk/Adobe-Runtime-Support/issues/3058

Title: Enabling native AAB signing with Java providerName argument

Applies to: Core build tools

Description: With some hardware-based code signing certificates, there will be a
requirement to configure the Java security file so that the certificate vendor’s
settings can be found, in which case rather than a “keystore” parameter, a
“providerName” parameter should be used for ADT. This should already
have worked for signing .air files, but was failing for .aab files where a
keystore value was expected. Note that further work is needed to ensure that
signing via Gradle builds can handle such a scenario.

https://github.com/airsdk/Adobe-Runtime-Support/issues/3046
https://github.com/airsdk/Adobe-Runtime-Support/issues/3058

Public 20(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

4 Android builds
4.1 AAB Target

Google introduced a new format for packaging up the necessary files and resources for an application
intended for uploading to the Play Store, called the Android App Bundle. Information on this can be
found at https://developer.android.com/guide/app-bundle

AIR now supports the App Bundle by creating an Android Studio project folder structure and using
Gradle to build this. It requires an Android SDK to be present and for the path to this to be passed in
to ADT via the “-platformsdk” option (or set via a config file – it also checks in the default SDK
download location). It also needs to have a JDK present and available, and will attempt to find this
either from configuration files or via the JAVA_HOME environment variable (or if there is an Android
Studio installation present in the default location, using the JDK provided by that).

To generate an Android App Bundle file, the ADT syntax is similar to the “apk” usage:

adt -package -target aab <signing options> output.aab <app descriptor and files> [-extdir
<folder>] -platformsdk <path_to_android_sdk>

No “-arch” option can be provided, as the tool will automatically include all of the architecture types.
Signing options are optional for an App Bundle.

Note that the creation of an Android App Bundle involves a few steps and can take significantly longer
than creating an APK file. We recommend that APK generation is still used during development and
testing, and the AAB output can be used when packaging up an application for upload to the Play
Store.

ADT allows an AAB file to be installed onto a handset using the “-installApp” command, which
wraps up the necessary bundletool commands that generate an APKS file (that contains a set of APK
files suitable for a particular device) and then installs it. If developers want to do this manually,
instructions for this are available at https://developer.android.com/studio/command-
line/bundletool#deploy_with_bundletool, essentially the below lines can be used:

java -jar bundletool.jar build-apks --bundle output.aab --output output.apks --connected-
device

java -jar bundletool.jar install-apks --apks=output.apks

Note that the APK generation here will use a default/debug keystore; additional command-line
parameters can be used if the output APK needs to be signed with a particular certificate.

4.2 Play Asset Delivery

As part of an App Bundle, developers can create ”asset packs” that are delivered to devices
separately from the main application, via the Play Store. For information on these, please refer to the
below link:

https://developer.android.com/guide/playcore/asset-delivery

In order to create asset packs, the application XML file needs to be modified within the <android>
section, to list the asset packs and their delivery mechanism, and to tell ADT which of the files/folders
being packaged should be put into which asset pack.

For example:
<assetPacks>

https://developer.android.com/guide/app-bundle
https://developer.android.com/studio/command-line/bundletool#deploy_with_bundletool
https://developer.android.com/studio/command-line/bundletool#deploy_with_bundletool
https://developer.android.com/guide/playcore/asset-delivery

Public 21(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

 <assetPack id="ImageAssetPack" delivery="on-demand"
folder="AP_Images"/>

</assetPacks>

This instruction would mean that any file found in the ”AP_Images” folder would be redirected into an
asset pack with a name ”ImageAssetPack”. The delivery mechanisms can be ”on-demand”, ”fast-
follow” or ”install-time” per the Android specifications.

Note that assets should be placed directly into the asset pack folder as required, rather than adding
an additional ”src/main/assets” folder structure that the Android documentation requires. This folder
structure is created automatically by ADT during the creation of the Android App Bundle.

The asset pack folder needs to be provided as a normal part of the command line for the files that
should be included in a package. So for example if the asset pack folder was ”AP_Images” and this
was located in the root folder of your project, the command line would be:
adt -package -target aab MyBundle.aab application.xml MyApp.swf AP_Images
[then other files, -platformsdk directive, etc]

If there were a number of asset packs and all of the relevant folders were found under an
”AssetPacks” folder in the root of the project, the command line would be:
adt -package -target aab MyBundle.aab application.xml MyApp.swf -C
AssetsPacks . [then other files, -platformsdk directive, etc]

To access the asset packs via the Android Asset Pack Manager functionality, an ANE is available via
the AIR Package Manager tool. See https://github.com/airsdk/ANE-PlayAssetDelivery/wiki

4.3 Android Text Rendering

Previously, the rendering of text on Android had been handled via a native library built into the C++-
based AIR runtime file. This had some restrictions and issues with handling fonts, which caused major
problems with Android 12 when the font fallback mechanism was changed and the native code no
longer coped with this. To resovle this, a new text rendering mechanism has been implemented that
uses public Android APIs in order to set up the fonts and to render the text.

The new mechanism uses JNI to communicate between the AIR runtime and the Android graphics
classes for this, and has some differences with the legacy version. One of the changes that has been
made is to correct the display of non-colorized text elements when rendering to bitmap data: in earlier
builds, if some text included an emoji with a fixed color (e.g. ”flames” that are always yellow/orange
even if you request a green font color) then these characters appeared blue, due to the different pixel
formats used by Android vs the AIR BitmapData objects. With the new mechanism, AIR correctly
renders these characters to BitmapData (although the problem still remains when rendering device
text to a ’direct’ mode display list).

Some developers may not want to switch to this new mechanism yet, and others may want their
applications to always use it. Some would perhaps want it only when absolutely necessary i.e. from
Android 12 onwards. To cope with this request, there is a new application descriptor setting that can
be used: ”<newFontRenderingFromAPI>” which shoudl be placed within the <android> section of the
descriptor XML. The property of this can be used to set the API version on which the new rendering
mechanism takes place. The default value is API level 31 which corresponds to Android 12.0 (see
https://source.android.com/setup/start/build-numbers). So for example if you always want devices to
use the new mechanism, you can add:

<newFontRenderingFromAPI>0</newFontRenderingFromAPI>

whereas if you never want devices to use this, you could add:
<newFontRenderingFromAPI>99999</newFontRenderingFromAPI>

https://github.com/airsdk/ANE-PlayAssetDelivery/wiki
https://source.android.com/setup/start/build-numbers

Public 22(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

4.4 Android File System Access

In the earlier versions of Android, it was possible to use the filesystem in a similar way to a Linux
computer, but with a set of restrictions that had a fairly high-level granularity:

- It was possible to read/write to an application’s private storage location. AIR exposes this via
”File.applicationStorageDirectory”.

- If the app requested the ’read/write storage’ permission, the app could then read and write in
the user’s shared storage location and to removable storage. The main home folder was
accessible via ”File.userDirectory” or ”File.documentsDirectory”, and later AIR
33.1 added ”File.applicationRemovableStorageDirectory”.

- Later, this was updated such that the user had to also grant permission via a system pop-up
message. To trigger this pop-up, AIR developers could use ”File.requestPermission()”

With the introduction of “scoped storage” however, a lot of this has changed. Android files are treated
in a similar way to other resources, with URLs using the “content://” schema which can refer either to
filesystem-backed files, or to transient resources, or elements within other storage mechanisms such
as databases and libraries. Permission to access each resource depends upon the creator of that
resource, and by default it’s not possible for an application to open a file that another application had
created. Permissions for the top-level internal storage (i.e. “File.documentsDirectory”) have
been changed so that applications cannot create entries here but must use sub-folders of these (a set
of standard sub-folders is generally created by the OS).

Within AIR, we have been attempting to add support for the “content://” URIs, and to switch the File
class “browseForXXX” functions so that they use the new intent-based mechanisms for selecting
files to open and save, or to select a folder. Within these calls, we are also requesting the appropriate
read/write permissions (and persisting these so that they can be used in the future). This means that it
should be possible to call “browseForOpen()” and allow the user to select a shared file that can
then always be opened (for reading). Equally a “browseForDirectory()” call should mean that an
application then has read/write access into the selected directory and its sub-tree.

Requesting file system permissions has to be handled in a similar way, with permissions either
granted for a file or for a folder tree. The “File.requestPermission()” function therefore looks at
the native path of the File object this is called on, and decides whether to show a file open intent (if
there’s a normal path or URL in the nativePath property), or to show a folder selection intent (if the
path ends in a forward-slash), or whether to just ignore the call with a ‘granted’ response and then
wait for later permission requests for individual files (if the File object has not had a nativePath set).
This last option is intended to allow apps to work across different Android versions and is the
recommended option: early in the application lifecycle, create a new File and call
requestPermissions(): if the app is running on an earlier Android version, the permission pop-up
will appear, otherwise the app will need to request specific file access later on via the
“browseForXXX” functions or by requesting permission for a specific file. Sadly it isn’t possible to
ensure that the user only gives a yes/no response for these file/folder open intents, they are able to
browse for other files, so it may be that the file the user selects is not the one you are trying to open. If
this is detected, the permission status event will show as ‘denied’, so if you are happy for the user to
choose a different file, use “browseForOpen()” rather than “requestPermission()”.

There is an exception to having to use scoped storage and the storage access framework, which is if
an application has the “MANAGE_EXTERNAL_FILES” permission. This permission is intended for
utilities such as file manager apps and anti-virus scanners that have a legitimate need to access all
the (shared storage) files on the device, but if an app requests this permission and is submitted to the
Play Store, but doesn’t justify itself, then the submission is likely to be rejected.

Some applications are not distributed via the Play Store though, at which point this permission can be
used to turn the behaviour back to how it used to be in earlier Android versions. The

Public 23(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

“File.requestPermission()” capability has been overridden in the cases where AIR detects this
permission has been requested in the manifest, and it will now display the appropriate dialog to ask
the user to turn on the ‘all files’ access for this app. Once this has been granted (asynchronously), it
would then be possible to create, read and write files and folders including in the root storage device.

Public 24(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

5 Windows builds
The SDK now includes support for Windows platforms, 32-bit and 64-bit. We recommend that
developers use the “bundle” option to create an output folder that contains the target application. This
needs to be packaged up using a third party installer mechanism, in order to provide something that
can be easily distributed to and installed by end users. HARMAN are looking at adapting the previous
AIR installer so that it would be possible for the AIR Developer Tool to perform this step, i.e. allowing
developers to create installation MSI files for Windows apps in a single step.

Instructions for creating bundle packages are at:

https://help.adobe.com/en_US/air/build/WSfffb011ac560372f709e16db131e43659b9-8000.html

Note that 64-bit applications can be created using the “-arch x64” command-line option, to be added
following the “-target bundle” option.

https://help.adobe.com/en_US/air/build/WSfffb011ac560372f709e16db131e43659b9-8000.html

Public 25(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

6 MacOS builds
MacOS builds are provided only as 64-bit versions. A limited shared runtime option is being prepared
so that existing AIR applications can be used on Catalina, but the expectation for new/updated
applications is to also use the “bundle” option to distribute the runtime along with the application, as
per the above Windows section.

Note that Adobe’s AIR 32 SDK can be used on Catalina if the SDK is taken out of ‘quarantine’ status.
For instructions please see an online guide such as:

https://www.soccertutor.com/tacticsmanager/Resolve-Adobe-AIR-Error-on-MacOS-Catalina.pdf

AIR SDK now supports MacOS Big Sur including on the new ARM-based M1 hardware: applications
will be generated with ‘universal binaries’ and most of the SDK tools are now likewise built as
universal apps.

https://www.soccertutor.com/tacticsmanager/Resolve-Adobe-AIR-Error-on-MacOS-Catalina.pdf

Public 26(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

7 iOS support
For deployment of AIR apps on iOS devices, the AIR Developer Tool will use the provided tools to
extract the ActionScript Byte Code from the SWF files, and compile this into machine code that is then
linked with the AIR runtime and embedded into the IPA file. The process of ahead-of-time compilation
depends upon a utility that has to run with the same processor address size as the target architecture:
hence to generate a 32-bit output file, it needs to run a 32-bit compilation process. This causes a
problem on MacOS Catalina where 32-bit binaries will not run.

Additionally, due to the generation of stub files from the iPhone SDK that are used in the linking
process – which are created in a similar, platform-specific way – it is not possible to create armv7-
based stub files when using Catalina or later. From release 33.1.1.620, the stub files are based on
iOS15 and are purely 64-bit. This means that no 32-bit IPAs can be generated, even when running on
older macOS versions or on Windows.

Public 27(27)
ADOBE AIR SDK RELEASE NOTES Version 50.2.4.4

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

8 Splash Screens
For our ‘free tier’ users, a splash screen is injected into the start-up of the AIR process, displaying the
HARMAN and AIR logos for around 2 seconds whilst the start-up continues in the background. There
are different mechanisms used for this on different platforms, the current systems are described
below.

8.1 Desktop (Windows/macOS)

Splash screens are displayed in a separate window centred on the main display, while the start-up
continues behind these. The processing of ActionScript is delayed until after the splash screen has
been removed.

8.2 Android

The splash screen is displayed during start-up and happens immediately the runtime library has been
loaded. After a slight delay the initial SWF file is loaded in and when processing for this starts, the
splash screen is removed.

8.3 iOS

The splash screen is implemented as a launch storyboard with the binary storyboard and related
assets included in the SDK. This has implications for those who are providing their own storyboards or
images in an Assets.car file:

- If you are on the ‘free tier’ then the AIR developer tool will ignore any launch storyboard you
have specified within your application descriptor file, or provided within the file set for
packaging into the IPA file.

- If you are creating an Assets.car file, then you need to add in the AIR splash images from the
SDK which are in the “lib/aot/res” folder. These should be copied and pasted into your
“.xcassets” folder in the Xcode project that you are using for creation of your assets.

Troubleshooting:

Message from ADT: “Warning: free tier version of AIR SDK will use the HARMAN launch
storyboard” – this will be displayed if a <UILaunchStoryboardName> tag has been added via the
AIR application descriptor file. The tag will be ignored and the Storyboard from the SDK will be used
instead.

Message from ADT: “Warning: removing user-included storyboard "[name]"” will be displayed
if there was a Storyboardc file that had been included in the list of files to package: this will be
removed.

Message from ADT: "Warning: free tier version of AIR SDK must use the HARMAN launch
storyboard" – this will be displayed if the Storyboardc file in the SDK has been replaced by a user-
generated one.

If a white screen is shown during start-up: check that the HARMAN splash images are included in
your assets.car file. Note that the runtime may shut down if it doesn’t detect the appropriate splash
images.

The runtime may also shut down for customers with a commercial license if a storyboard has been
specified within the AIR descriptor file but not added via the list of files to package into the IPA file.

	1 Release Overview
	1.1 Key changes
	1.2 Deployment
	1.3 Limitations
	1.4 Feedback
	1.5 Notes

	2 Release Information
	2.1 Delivery Method
	2.2 The Content of the Release
	2.2.1 Detailed SW Content of the Release
	2.2.2 Delivered Documentation
	2.2.3 Build Environment

	2.3 AIR for Linux – Restrictions
	2.4 AIR for Flex users

	3 Summary of changes
	3.1 Runtime and namespace version
	3.2 Build Tools
	3.3 AS3 APIs
	3.4 Features
	3.5 Bug Fixes
	3.5.1 Release 50.2.4.1
	3.5.2 Release 50.2.4.2
	3.5.3 Release 50.2.4.3
	3.5.4 Release 50.2.4.4

	4 Android builds
	4.1 AAB Target
	4.2 Play Asset Delivery
	4.3 Android Text Rendering
	4.4 Android File System Access

	5 Windows builds
	6 MacOS builds
	7 iOS support
	8 Splash Screens
	8.1 Desktop (Windows/macOS)
	8.2 Android
	8.3 iOS

