

Public 1(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Adobe AIR SDK Release Notes

Version 51.0.0.2
Date 20 February 2024
Document ID HCS19-000287
Owner Andrew Frost

Public 2(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Table of contents
1 Release Overview ...3
1.1 Key changes ...3
1.2 Deployment ..4
1.3 Limitations ..4
1.4 Feedback ..4
1.5 Notes ..4

2 Release Information ...5
2.1 Delivery Method ...5
2.2 The Content of the Release ...5
2.3 AIR for Linux – Restrictions ...6
2.4 AIR for Flex users ..6

3 Summary of changes ...7
3.1 Runtime and namespace version ..7
3.2 Build Tools ..7
3.3 AS3 APIs ..7
3.4 Features ...8
3.5 Bug Fixes... 15

4 Android builds ... 17
4.1 AAB Target .. 17
4.2 Play Asset Delivery ... 17
4.3 Android Text Rendering .. 18
4.4 Android File System Access ... 19

5 Windows builds ... 21

6 MacOS builds... 22

7 iOS support .. 23

8 Splash Screens ... 24
8.1 Desktop (Windows/macOS) .. 24
8.2 Android .. 24
8.3 iOS ... 24

Public 3(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

1 Release Overview
This is a pre-release / beta version of the AIR SDK. Please note that there are a number of features
that may not be fully completed, and the maturity of this release is likely to be lower than normal. This
version of the AIR SDK should not be used for production applications, instead it is intended for
people to explore the new features and APIs, and to provide feedback on this – as well as to check
their existing applications against, to guard against regressions.

Build 51.0.0.1 did not make it to public release so these release notes are updated with a few
additional changes for 51.0.0.2, but without creating new/colour-coded sections for this.

1.1 Key changes

There are a number of new features/APIs that are available within this release. A better description of
these will be posted on the Github discussion board under https://github.com/airsdk/Adobe-Runtime-
Support/discussions but a brief list is below:

Single-precision floating point. A new “float” class is introduced with 32-bit data storage for single-
precision numeric values, along with some new methods for Stage3D classes to take advantage of
vectors based on this type. The new AS3 compiler is required for this, and SWFs generated from
source code that uses this data type will not run on any AIR runtime prior to 51.0.

Linux ARM64 support. The Linux variant of the AIR SDK has been updated to include both x86_64
and arm64 binaries. It is possible to switch between these using a ‘configure’ command, which uses
symbolic links to switch between the binaries.

Zip archive support. New ActionScript classes are added to allow zip files to be handled directly
within ActionScript, including shortcuts to carry out common zip tasks via a background thread. Work
in progress: currently unzipping is supported, generation of zip files is pending.

WebSocket support. New ActionScript classes for handling the WebSocket protocol to allow
browser-based applications to connect and communicate with AIR applications. Work in progress:
currently the AIR side can act as a socket, but cannot act as a client to open a new connection to a
server.

Encryption capabilities. Basic encryption and decryption of ByteArray data, along with generation of
a random byte stream using the platform’s cryptographic functions.

ByteArray updates. New utility methods to convert between binary and string data formats. This now
supports base64 encoding/decoding, and hexadecimal (i.e. base16) encoding/decoding.

Other language features. Minor updates to a number of classes as requested by various developers
via the Github forums. This includes String ‘startsWith’ and ‘endsWith’ functions, Array/Vector
‘includes’ and ‘isEmpty’ functions, and tweaks to StageWebView, StageText and TextField APIs.

New ANE functionality. Some additional APIs have been added to the C API (and these will also be
provided via the Java API at some point), mostly to aid in the display of external content via a display
list object.

https://github.com/airsdk/Adobe-Runtime-Support/discussions
https://github.com/airsdk/Adobe-Runtime-Support/discussions

Public 4(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

1.2 Deployment

To obtain the release, it is recommended that developers install the AIR SDK Manager. Whilst the
monolithic zip files will still be available from the https://airsdk.harman.com website, this may be
updated less frequently in the future with only major releases. The goal is for the AIR SDK Manager to
help us publish minor updates/fixes with a quicker cadence without resulting in a large amount of
effort and data downloads.

The AIR SDK Manager is now available from the https://airsdk.dev website, as part of the “getting
started” instructions, or directly from github at: https://github.com/airsdk/airsdkmanager-releases

1.3 Limitations

For macOS users on 10.15+, the SDK may not work properly unless the quarantine setting is
removed from the SDK: $ xattr -d -r com.apple.quarantine /path/to/SDK

Please note that there is no longer support for 32-bit IPA files, all IPAs will use just 64-bit binaries now
so older iPhones/iPads may not be supported.

Android development should now be performed with an installation of Android Studio and the SDK
and build tools, so that the new build mechanism (using Gradle and the Android Gradle Plug-in) can
use the same set-up as Android Studio.

1.4 Feedback

Any issues found with the SDK should be reported to adobe.support@harman.com or preferably
raised on https://github.com/airsdk/Adobe-Runtime-Support/issues.

The website for AIR SDK is available at: https://airsdk.harman.com with the developer portal available
under https://airsdk.dev

1.5 Notes

Contributors to the https://airsdk.dev website would be very welcomed: this portal is being built up as
the repository of knowledge for AIR and will be taking over from Adobe’s developer websites

The AS3 documentation for AIR is updated and now also available under this site:
https://airsdk.dev/reference/actionscript/3.0/

We will continue to provide the shared AIR runtime for Windows/macOS; however, this is not a
recommended deployment mechanism, it is prefereably to create native installers based on the
”bundle” deployments.

On MacOS in particular, the use of the shared AIR runtime to ‘install’ a .air file will not create a signed
application, hence new MacOS versions may block these from running. To ensure a properly signed
MacOS application is created, the “bundle” option should be used with native code-signing options
(i.e. those appearing after the “-target bundle” option) having a KeychainStore type with the alias
being the full certificate name.

https://airsdk.harman.com/
https://airsdk.dev/
https://github.com/airsdk/airsdkmanager-releases
mailto:adobe.support@harman.com
https://github.com/airsdk/Adobe-Runtime-Support/issues
https://airsdk.harman.com/
https://airsdk.dev/
https://airsdk.dev/
https://airsdk.dev/reference/actionscript/3.0/

Public 5(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

2 Release Information
2.1 Delivery Method

This release shall be delivered via the AIR SDK website: https://airsdk.harman.com/download

The update will also be available via the AIR SDK Manager. The latest version of this can be
downloaded from https://github.com/airsdk/airsdkmanager-releases/releases.

2.2 The Content of the Release

2.2.1 Detailed SW Content of the Release

Component Name 51.0.0.2

Core Tools 3.0.0

AIR Tools 3.0.0

Windows platform package 3.0.0

MacOS platform package 3.0.0

Linux platform package 3.0.0

Android platform package 3.0.0

iPhone platform package 3.0.0

2.2.2 Delivered Documentation

Title Document Number Version

Adobe AIR SDK Release Notes HCS19-000287 51.0.0

2.2.3 Build Environment

Platform Build Details

Android Target SDK Version: 33

Minimum SDK Version: 16 (ARMv7, x86); 21 (ARMv8, x86_64)

Platform Tools: 28.0.3

Build Tools: 33.0.2

SDK Platform: Android-33

Note – these are the versions we use to build the AIR SDK and runtime,
we also recommend developers match the same ‘target SDK’ version as
here.

iOS iPhoneOS SDK Version: 17.2

iPhoneSimulator SDK Version: 17.2

XCode Version: 15.2

Minimum iOS Target: 12.0

https://airsdk.harman.com/download
https://github.com/airsdk/airsdkmanager-releases/releases

Public 6(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

tvOS tvOS SDK Version: 17.2

tvSimulator SDK Version: 17.2

XCode Version: 15.2

Minimum tvOS Target: 12.0

MacOS MacOS SDK Version: 14.2

XCode Version: 15.2

Minimum macOS Target: 10.15

Windows Visual Studio Version: 14.0.25431.01 Update 3

Linux GCC Version 11.4.0 (Ubuntu 22.04.1 – x86_64)

 11.4.0 (Ubuntu 22.04.3 – arm64)

2.3 AIR for Linux – Restrictions

The AIR SDK now supports both x86_64 and arm64 based Linux platforms. These are only available
to developers with a commercial license to the SDK, and have some restrictions:

- No “shared runtime” support: applications would need to be built as ‘bundle’ packages with
the captive runtimes

- Packaging into native installers (“native” target type for .deb or .rpm files) is currently not
working: please create a “bundle” target and use Linux tools to distribute these

- No “StageWebView” component.

2.4 AIR for Flex users

HARMAN have continued Adobe’s strategy of issuing two AIR SDKs per platform: the first of these
(“AIRSDK_[os].zip”) contains the newer ActionScript compiler and is a full, self-contained SDK for
compiling and packaging AIR applications. The second of these is for combination with the Flex SDK
(“AIRSDK_Flex_[os].zip”) which doesn’t include a number of the files necessary for
ActionScript/MXML compilation. These SDKs should be extracted over the top of an existing, valid
Flex SDK.

The original instructions from Adobe are at https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-
air-sdk-flex-sdk.html but a few alterations to this are needed to Step 4 if running on macOS. For this
platform, the downloaded AIR SDK zip needs to be expanded to a temporary area and then the copy
command needs to copy symbolic links as links rather than resolving them to files. This can be done
using a capital ’R’ rather than lowercase, hence:

cp -Rf /tmp/AIRSDK_Flex_MacOS/* /path-to-empty-FLEXSDK-directory

Please note that the config files (air-config.xml, airmobile-config.xml, flex-config.xml) may need to be
updated to support new features and updates in AIR or in dependencies such as ANEs. For example
to ensure the correct SWF version is output, the below line would need to be updated (e.g. to ‘50’ for
AIR 50.x, or ‘44’ for AIR 33.1, etc):
<swf-version>14</swf-version>

https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-air-sdk-flex-sdk.html
https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-air-sdk-flex-sdk.html

Public 7(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

3 Summary of changes
3.1 Runtime and namespace version

Namespace: 51.0

SWF version: 51

The namespace and SWF version updates are made across all platforms and may be used to access
the updated ActionScript APIs that have been introduced with AIR version 51.0. The namespace update
is required for opening any SWF file that’s got a SWF version of 51, or when using any of the new XML
application descriptor flags.

3.2 Build Tools

The Android build tools and platform used to create the AIR runtime files has been updated to
Android-33 with the default target SDK now set to this level in the generated Android manifest files.

Xcode 15.2 and the latest macOS and iphoneOS/tvOS SDKs are now being used to build the AIR
SDK. Please note when the update was made to use Xcode 15.0, the minimum iOS/tvOS target
version was increased to 12. Additional note: these are the versions that AIR itself is built with. The
versions shown in IPA files are manually injected by ADT and don’t (yet) take the version codes from
the local build environment. See Issue #3030 (github.com).

The build system for this is on a version of macOS that doesn’t support 32-bit processes hence we
cannot generate the 32-bit versions of the stub files. This means that we can no longer support older
32-bit iPhone/iPad devices.

3.3 AS3 APIs

For full details, please see What's New (airsdk.dev)

Package/Class Updated Element Element name

air.security.Encryption New Class Encryption

air.system.License New Class License

flash.text.StageTextContentType New Class StageTextContentType

air.net.WebSocket New Class WebSocket

flash.events.WebSocketEvent New Class WebSocketEvent

air.utils.ZipArchive New Class ZipArchive

air.utils.ZipEntry New Class ZipEntry

flash.display3D.Context3D New Method setProgramConstantsFromFloatVector

flash.events.DataEvent New Property WEBVIEW_MESSAGE

flash.net.DatagramSocket New Method broadcast

air.security.Digest New Property SHA512

flash.events.MouseEvent New Property MOUSE_WHEEL_HORIZONTAL

flash.events.SecurityErrorEvent New Property CERTIFICATE_ERROR

https://github.com/airsdk/Adobe-Runtime-Support/issues/3030
https://airsdk.dev/reference/actionscript/3.0/whatsnew.html

Public 8(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

flash.net.Socket New Property tcpNoDelay

flash.text.StageText New Property contentType

flash.media.StageWebView Updated Constructor StageWebView

flash.media.StageWebView New Method postMessage

flash.system.System Updated Method decryptBlob

flash.text.TextField New Property allowedDomains

flash.display3D.VertexBuffer3D New Method uploadFromFloatVector

Array New Methods includes

Array New Methods isEmpty

flash.utils.ByteArray New Methods createFromBase64

flash.utils.ByteArray New Methods createFromHexString

flash.utils.ByteArray New Methods writeBase64

flash.utils.ByteArray New Methods writeHexString

flash.utils.ByteArray New Methods toBase64

flash.utils.ByteArray New Methods toHexString

flash.utils.ByteArray New Methods writeRandomBytes

float New Class float

String New Methods endsWith

String New Methods startsWith

Vector New Methods includes

Vector New Methods isEmpty

Function New Property declaration

NetworkInfo New Property disableNetworkChanges

3.4 Features

Reference: AIR-309

Title: Adding AS3 API for allowing AS3 to handle HTTPS certificate
errors

Applies to: All runtime components

Description: The “certificateError” event had been introduced in AIR 50.2.3 as an
anonymous event (i.e. the string had to be used manually); this change
introduces a definition for it under the SecurityErrorEvent class. A runtime
error, code 2128, has been introduced for this.

Public 9(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: AIR-5963

Title: Add ANE capabilities to render a Sprite using a MediaBuffer -
initial support via BitmapData

Allowing ANEs to lock, modify and unlock MediaBuffer content
for updating a display object

Applies to: All runtime components

Description: A sprite object can be updated using the air.media.MediaBuffer class, which
can be created from a BitmapData object (or from an embedded Bitmap
object). The MediaBuffer can be used as the source for rendering, and with
the Lock/Unlock methods it can also be updated from the ANE code to result
in animation effects.

Reference: AIR-6012

Title: AS3 API for StageWebView constructor changes

Applies to: All runtime components

Description: The StageWebView constructor has been adjusted to make it more flexible,
in order to add new features/capabilities in the future for configuring the
platform-specific WebView components. Note that currently this doesn’t
include any enhancements, but these will be made possible via the new
constructor mechanism.

Reference: AIR-6051, AIR-6053, AIR-6054

Title: AIR zip support: Basic reading in of zip files to get entry
details

Create initial AS3 API and framework for zip file support in
AIR

Adding unzip/inflate support for Zip files

Applies to: All runtime components

Description: New APIs for handling zip files. Currently a zip can be read in – or
constructed manually – and extracted into a folder. Writing a compressed zip
or creating one from a folder will be added in a future update.

Public 10(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: AIR-6063

Title: Updated OpenSSL-based ELS key storage

Applies to: All runtime components

Description: To work around some of the platform-specific problems we had had with
storage of keys for the Encrypted Local Store functionality, an OpenSSL-
based mechanism has been created in conjunction with platform-specific key
store. This change is transparent to the users of the ELS APIs but should
result in a better user experience without pop-up dialogs.

Reference: AIR-6279

Title: AIR runtime support for float (removing float4 code)

Applies to: All runtime components + Core build tools

Description: Changes have been added into the runtime for a 32-bit “float” data type,
which can also be used with the compiler present in The non-Flex versions
of the AIR SDK 51.x. Adobe had originally also considered a “float4”
structure but this has been excluded.

Reference: AIR-6288

Title: AIR AS3 API for encrypting and decrypting a byte array

Applies to: All runtime components

Description: Functionality for encrypting/decryption a byte array object using industry
standard mechanisms – via OpenSSL. These APIs are not currently
implemented on iOS, for which a non-OpenSSL version will be needed (i.e.
using the Apple APIs).

Reference: AIR-6425

Title: AS3 API for Socket.tcpNoDelay setting

Applies to: All runtime components

Public 11(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: The capability to request ‘no delay’ on a TCP socket had been added in
50.2.1, using a hacked method to set this flag via the target address. This
update introduces this properly as a property on the Socket class.

Reference: AIR-6579

Title: AS3 String startsWith and endsWith

Applies to: All runtime components

Description: New methods on the String class to provide easier methods to check for
comparisons between substrings occurring at the start or end of another
string.

Reference: AIR-6580

Title: Add 'includes' and 'isEmpty' to Array and Vector classes

Applies to: All runtime components

Description: Utility methods for Array/Vector classes, to see whether a collection contains
an element, or to see if it’s empty, without having to iterate or do a length
comparison.

Reference: AIR-6581

Title: Adding ByteArray conversions to/from base16 and base64

Applies to: All runtime components

Description: String to binary conversions using hex (base16) and base64 string formats.

Reference: AIR-6707

Title: Adding DatagramSocket.broadcast() method for UDP broadcasts

Public 12(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Applies to: All runtime components

Description: The broadcast capability had been added recently but with some limitations,
this function now allows developers to properly send out broadcast
messages to a particular network.

Reference: AIR-6752

Title: AIR Digest to include SHA-512 support

Applies to: All runtime components

Description: Addition of the SHA-512 digest/checksum mechanism.

Reference: AIR-6991

Title: ByteArray write random bytes

Applies to: All runtime components

Description: Ability to overwrite a ByteArray with cryptographic random data.

Reference: AIR-6992

Title: Update SWF tag encryption to support custom keys

Applies to: All runtime components + Core build tools

Description: The ‘encrypt’ label in an Embed directive can be set to a custom string, in
order to use a different key when encrypting an embedded byte array. The
decryption now takes this as an optional key; default behaviour will remain
the same but should not be considered secure. The key can be provided on
the command-line for the compiler, if required, rather than in the source.

Reference: AIR-7018

Public 13(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Title: ADT move all iOS linker inputs into a single folder structure

Applies to: Core build tools

Description: In preparation for the “remote mac linking” operations (to link a binary on a
mac computer whilst building/packaging on a Windows one) the output
structures have been changed to keep everything in a single temp folder.

Reference: Github-216 https://github.com/airsdk/Adobe-Runtime-Support/issues/216

Title: Support for WebSocket servers

Applies to: All runtime components

Description: Adding a WebSocket class and implementation of a server, allowing an
incoming HTTP connection to be promoted to WebSocket and handling the
data transfers. Client functionality (for outgoing connections) is pending.

Reference: Github-1242 https://github.com/airsdk/Adobe-Runtime-Support/issues/1242

Title: Allow images in HTML text fields via 'allowedDomains' property

Applies to: All runtime components

Description: Web-based images had been blocked from HTML-based text fields, for
security reasons. This property allows the developer to determine which
domains are considered ‘safe’ to allow such images to be used.

Reference: Github-1858 https://github.com/airsdk/Adobe-Runtime-Support/issues/1858

Title: Adding horizontal mouse wheel support

Applies to: All runtime components

Description: Horizontal mouse wheel events are now being dispatched by interactive
objects, on desktop platforms and on Android where supported.

Reference: Github-1936 https://github.com/airsdk/Adobe-Runtime-Support/issues/1936

https://github.com/airsdk/Adobe-Runtime-Support/issues/216
https://github.com/airsdk/Adobe-Runtime-Support/issues/1242
https://github.com/airsdk/Adobe-Runtime-Support/issues/1858
https://github.com/airsdk/Adobe-Runtime-Support/issues/1936

Public 14(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Title: Allow windows.UseWebView2 'exclusive' mode to prevent
IE/WebBrowser usage

Applies to: Windows runtime components and Core build tools

Description: The “UseWebView2” application descriptor option for Windows has been
updated from a simple true/false to also support “exclusive”, which would
mean that if the Edge WebView2 component is not present, the
StageWebView constructor would fail (throw an error) rather than falling back
to using the earlier IE-based WebView.

Reference: Github-2625 https://github.com/airsdk/Adobe-Runtime-Support/issues/2625

Title: Adding NetworkInfo.disableNetworkChanges flag to prevent
socket disconnects

Applies to: Desktop runtime components

Description: As a workaround to spurious socket disconnects, it is now possible to disable
the AIR runtime from monitoring and responding to network information
changes on a platform. This setting is initially off (false) and if set to true, will
disable the NativeApplication “networkChange” event as well as the internal
handling of network changes within the media code.

Reference: Github-2742 https://github.com/airsdk/Adobe-Runtime-Support/issues/2742

Title: Adding Function.declaration property to find details of a
function

Applies to: All runtime components

Description: With a reference to a Function object, it is possible now to request a string
representation of the function prototype. This can also be used to determine
whether or not the function is a member of a class, or an anonymous
function, etc.

Reference: Github-3060 https://github.com/airsdk/Adobe-Runtime-Support/issues/3060

Title: AS3 StageTextContentType class for StageText support for OTP
SMS entry

Applies to: All runtime components

https://github.com/airsdk/Adobe-Runtime-Support/issues/2625
https://github.com/airsdk/Adobe-Runtime-Support/issues/2742
https://github.com/airsdk/Adobe-Runtime-Support/issues/3060

Public 15(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: A new class/API is added to allow a StageText object to be given a ‘content
type’ hint. This can be useful to enable users to easily copy/paste from their
SMS messages into the StageText object, if they have just received an SMS
with a one-time password.

3.5 Bug Fixes

3.5.1 Release 51.0.0.1 and 51.0.0.2

Reference: AIR-6840

Title: FileReference.upload() to cope with binary file responses
(Windows)

Applies to: Windows runtime components

Description: The FileReference.upload() method has assumed a simple text-based HTTP
response. For Windows this has been extended now to handle a binary
response, which will be made available via the “data” parameter of the
DataEvent received in the DataEvent.UPLOAD_COMPLETE_DATA handler.

Reference: Github-2318 https://github.com/airsdk/Adobe-Runtime-Support/issues/2318

Title: Removing StageVideo viewport coordinate limits for AIR 51 apps

Applies to: All runtime components

Description: For an application with the 51.0 namespace, the viewport coordinates will no
longer be limited for a StageVideo object. It is then up to the developer to
test and ensure behaviour is appropriate on the target platforms.

Reference: Github-3024 https://github.com/airsdk/Adobe-Runtime-Support/issues/3024

Title: Removing StageWebView viewport coordination limits for AIR 51
apps

Applies to: All runtime components

Description: For an application with the 51.0 namespace, the viewport coordinates will no
longer be limited for a StageWebView object. It is then up to the developer to
test and ensure behaviour is appropriate on the target platforms.

https://github.com/airsdk/Adobe-Runtime-Support/issues/2318
https://github.com/airsdk/Adobe-Runtime-Support/issues/3024

Public 16(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: Github-3062 https://github.com/airsdk/Adobe-Runtime-Support/issues/3062

Title: Updating Win32 camera handling to include better fallbacks
where direct connect fails

Applies to: Windows runtime component

Description: If a camera source could not be directly connected to the AIR DirectShow
filter, or via a conversion filter, the resulting situation meant that no mode
information was available (negative width/height) and that no camera
previews were available. The fallbacks have been updated to ensure that if
the “capture graph builder” is able to make a connection, then the camera is
now supported properly. Specifically this now works for EOS Webcam utility,
but the OBS virtual camera is still not working..

https://github.com/airsdk/Adobe-Runtime-Support/issues/3062

Public 17(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

4 Android builds
4.1 AAB Target

Google introduced a new format for packaging up the necessary files and resources for an application
intended for uploading to the Play Store, called the Android App Bundle. Information on this can be
found at https://developer.android.com/guide/app-bundle

AIR now supports the App Bundle by creating an Android Studio project folder structure and using
Gradle to build this. It requires an Android SDK to be present and for the path to this to be passed in
to ADT via the “-platformsdk” option (or set via a config file – it also checks in the default SDK
download location). It also needs to have a JDK present and available, and will attempt to find this
either from configuration files or via the JAVA_HOME environment variable (or if there is an Android
Studio installation present in the default location, using the JDK provided by that).

To generate an Android App Bundle file, the ADT syntax is similar to the “apk” usage:

adt -package -target aab <signing options> output.aab <app descriptor and files> [-extdir
<folder>] -platformsdk <path_to_android_sdk>

No “-arch” option can be provided, as the tool will automatically include all of the architecture types.
Signing options are optional for an App Bundle.

Note that the creation of an Android App Bundle involves a few steps and can take significantly longer
than creating an APK file. We recommend that APK generation is still used during development and
testing, and the AAB output can be used when packaging up an application for upload to the Play
Store.

ADT allows an AAB file to be installed onto a handset using the “-installApp” command, which
wraps up the necessary bundletool commands that generate an APKS file (that contains a set of APK
files suitable for a particular device) and then installs it. If developers want to do this manually,
instructions for this are available at https://developer.android.com/studio/command-
line/bundletool#deploy_with_bundletool, essentially the below lines can be used:

java -jar bundletool.jar build-apks --bundle output.aab --output output.apks --connected-
device

java -jar bundletool.jar install-apks --apks=output.apks

Note that the APK generation here will use a default/debug keystore; additional command-line
parameters can be used if the output APK needs to be signed with a particular certificate.

4.2 Play Asset Delivery

As part of an App Bundle, developers can create ”asset packs” that are delivered to devices
separately from the main application, via the Play Store. For information on these, please refer to the
below link:

https://developer.android.com/guide/playcore/asset-delivery

In order to create asset packs, the application XML file needs to be modified within the <android>
section, to list the asset packs and their delivery mechanism, and to tell ADT which of the files/folders
being packaged should be put into which asset pack.

For example:
<assetPacks>

https://developer.android.com/guide/app-bundle
https://developer.android.com/studio/command-line/bundletool#deploy_with_bundletool
https://developer.android.com/studio/command-line/bundletool#deploy_with_bundletool
https://developer.android.com/guide/playcore/asset-delivery

Public 18(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

 <assetPack id="ImageAssetPack" delivery="on-demand"
folder="AP_Images"/>

</assetPacks>

This instruction would mean that any file found in the ”AP_Images” folder would be redirected into an
asset pack with a name ”ImageAssetPack”. The delivery mechanisms can be ”on-demand”, ”fast-
follow” or ”install-time” per the Android specifications.

Note that assets should be placed directly into the asset pack folder as required, rather than adding
an additional ”src/main/assets” folder structure that the Android documentation requires. This folder
structure is created automatically by ADT during the creation of the Android App Bundle.

The asset pack folder needs to be provided as a normal part of the command line for the files that
should be included in a package. So for example if the asset pack folder was ”AP_Images” and this
was located in the root folder of your project, the command line would be:
adt -package -target aab MyBundle.aab application.xml MyApp.swf AP_Images
[then other files, -platformsdk directive, etc]

If there were a number of asset packs and all of the relevant folders were found under an
”AssetPacks” folder in the root of the project, the command line would be:
adt -package -target aab MyBundle.aab application.xml MyApp.swf -C
AssetsPacks . [then other files, -platformsdk directive, etc]

To access the asset packs via the Android Asset Pack Manager functionality, an ANE is available via
the AIR Package Manager tool. See https://github.com/airsdk/ANE-PlayAssetDelivery/wiki

4.3 Android Text Rendering

Previously, the rendering of text on Android had been handled via a native library built into the C++-
based AIR runtime file. This had some restrictions and issues with handling fonts, which caused major
problems with Android 12 when the font fallback mechanism was changed and the native code no
longer coped with this. To resovle this, a new text rendering mechanism has been implemented that
uses public Android APIs in order to set up the fonts and to render the text.

The new mechanism uses JNI to communicate between the AIR runtime and the Android graphics
classes for this, and has some differences with the legacy version. One of the changes that has been
made is to correct the display of non-colorized text elements when rendering to bitmap data: in earlier
builds, if some text included an emoji with a fixed color (e.g. ”flames” that are always yellow/orange
even if you request a green font color) then these characters appeared blue, due to the different pixel
formats used by Android vs the AIR BitmapData objects. With the new mechanism, AIR correctly
renders these characters to BitmapData (although the problem still remains when rendering device
text to a ’direct’ mode display list).

Some developers may not want to switch to this new mechanism yet, and others may want their
applications to always use it. Some would perhaps want it only when absolutely necessary i.e. from
Android 12 onwards. To cope with this request, there is a new application descriptor setting that can
be used: ”<newFontRenderingFromAPI>” which shoudl be placed within the <android> section of the
descriptor XML. The property of this can be used to set the API version on which the new rendering
mechanism takes place. The default value is API level 31 which corresponds to Android 12.0 (see
https://source.android.com/setup/start/build-numbers). So for example if you always want devices to
use the new mechanism, you can add:

<newFontRenderingFromAPI>0</newFontRenderingFromAPI>

whereas if you never want devices to use this, you could add:
<newFontRenderingFromAPI>99999</newFontRenderingFromAPI>

https://github.com/airsdk/ANE-PlayAssetDelivery/wiki
https://source.android.com/setup/start/build-numbers

Public 19(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

4.4 Android File System Access

In the earlier versions of Android, it was possible to use the filesystem in a similar way to a Linux
computer, but with a set of restrictions that had a fairly high-level granularity:

- It was possible to read/write to an application’s private storage location. AIR exposes this via
”File.applicationStorageDirectory”.

- If the app requested the ’read/write storage’ permission, the app could then read and write in
the user’s shared storage location and to removable storage. The main home folder was
accessible via ”File.userDirectory” or ”File.documentsDirectory”, and later AIR
33.1 added ”File.applicationRemovableStorageDirectory”.

- Later, this was updated such that the user had to also grant permission via a system pop-up
message. To trigger this pop-up, AIR developers could use ”File.requestPermission()”

With the introduction of “scoped storage” however, a lot of this has changed. Android files are treated
in a similar way to other resources, with URLs using the “content://” schema which can refer either to
filesystem-backed files, or to transient resources, or elements within other storage mechanisms such
as databases and libraries. Permission to access each resource depends upon the creator of that
resource, and by default it’s not possible for an application to open a file that another application had
created. Permissions for the top-level internal storage (i.e. “File.documentsDirectory”) have
been changed so that applications cannot create entries here but must use sub-folders of these (a set
of standard sub-folders is generally created by the OS).

Within AIR, we have been attempting to add support for the “content://” URIs, and to switch the File
class “browseForXXX” functions so that they use the new intent-based mechanisms for selecting
files to open and save, or to select a folder. Within these calls, we are also requesting the appropriate
read/write permissions (and persisting these so that they can be used in the future). This means that it
should be possible to call “browseForOpen()” and allow the user to select a shared file that can
then always be opened (for reading). Equally a “browseForDirectory()” call should mean that an
application then has read/write access into the selected directory and its sub-tree.

Requesting file system permissions has to be handled in a similar way, with permissions either
granted for a file or for a folder tree. The “File.requestPermission()” function therefore looks at
the native path of the File object this is called on, and decides whether to show a file open intent (if
there’s a normal path or URL in the nativePath property), or to show a folder selection intent (if the
path ends in a forward-slash), or whether to just ignore the call with a ‘granted’ response and then
wait for later permission requests for individual files (if the File object has not had a nativePath set).
This last option is intended to allow apps to work across different Android versions and is the
recommended option: early in the application lifecycle, create a new File and call
requestPermissions(): if the app is running on an earlier Android version, the permission pop-up
will appear, otherwise the app will need to request specific file access later on via the
“browseForXXX” functions or by requesting permission for a specific file. Sadly it isn’t possible to
ensure that the user only gives a yes/no response for these file/folder open intents, they are able to
browse for other files, so it may be that the file the user selects is not the one you are trying to open. If
this is detected, the permission status event will show as ‘denied’, so if you are happy for the user to
choose a different file, use “browseForOpen()” rather than “requestPermission()”.

There is an exception to having to use scoped storage and the storage access framework, which is if
an application has the “MANAGE_EXTERNAL_FILES” permission. This permission is intended for
utilities such as file manager apps and anti-virus scanners that have a legitimate need to access all
the (shared storage) files on the device, but if an app requests this permission and is submitted to the
Play Store, but doesn’t justify itself, then the submission is likely to be rejected.

Some applications are not distributed via the Play Store though, at which point this permission can be
used to turn the behaviour back to how it used to be in earlier Android versions. The

Public 20(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

“File.requestPermission()” capability has been overridden in the cases where AIR detects this
permission has been requested in the manifest, and it will now display the appropriate dialog to ask
the user to turn on the ‘all files’ access for this app. Once this has been granted (asynchronously), it
would then be possible to create, read and write files and folders including in the root storage device.

Public 21(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

5 Windows builds
The SDK now includes support for Windows platforms, 32-bit and 64-bit. We recommend that
developers use the “bundle” option to create an output folder that contains the target application. This
needs to be packaged up using a third party installer mechanism, in order to provide something that
can be easily distributed to and installed by end users. HARMAN are looking at adapting the previous
AIR installer so that it would be possible for the AIR Developer Tool to perform this step, i.e. allowing
developers to create installation MSI files for Windows apps in a single step.

Instructions for creating bundle packages are at:

https://help.adobe.com/en_US/air/build/WSfffb011ac560372f709e16db131e43659b9-8000.html

Note that 64-bit applications can be created using the “-arch x64” command-line option, to be added
following the “-target bundle” option.

https://help.adobe.com/en_US/air/build/WSfffb011ac560372f709e16db131e43659b9-8000.html

Public 22(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

6 MacOS builds
MacOS builds are provided only as 64-bit versions. A limited shared runtime option is being prepared
so that existing AIR applications can be used on Catalina, but the expectation for new/updated
applications is to also use the “bundle” option to distribute the runtime along with the application, as
per the above Windows section.

Note that Adobe’s AIR 32 SDK can be used on Catalina if the SDK is taken out of ‘quarantine’ status.
For instructions please see an online guide such as:

https://www.soccertutor.com/tacticsmanager/Resolve-Adobe-AIR-Error-on-MacOS-Catalina.pdf

AIR SDK now supports MacOS Big Sur including on the new ARM-based M1 hardware: applications
will be generated with ‘universal binaries’ and most of the SDK tools are now likewise built as
universal apps.

https://www.soccertutor.com/tacticsmanager/Resolve-Adobe-AIR-Error-on-MacOS-Catalina.pdf

Public 23(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

7 iOS support
For deployment of AIR apps on iOS devices, the AIR Developer Tool will use the provided tools to
extract the ActionScript Byte Code from the SWF files, and compile this into machine code that is then
linked with the AIR runtime and embedded into the IPA file. The process of ahead-of-time compilation
depends upon a utility that has to run with the same processor address size as the target architecture:
hence to generate a 32-bit output file, it needs to run a 32-bit compilation process. This causes a
problem on MacOS Catalina where 32-bit binaries will not run.

Additionally, due to the generation of stub files from the iPhone SDK that are used in the linking
process – which are created in a similar, platform-specific way – it is not possible to create armv7-
based stub files when using Catalina or later. From release 33.1.1.620, the stub files are based on
iOS15 and are purely 64-bit. This means that no 32-bit IPAs can be generated, even when running on
older macOS versions or on Windows.

Public 24(24)
ADOBE AIR SDK RELEASE NOTES Version 51.0.0.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

8 Splash Screens
For our ‘free tier’ users, a splash screen is injected into the start-up of the AIR process, displaying the
HARMAN and AIR logos for around 2 seconds whilst the start-up continues in the background. There
are different mechanisms used for this on different platforms, the current systems are described
below.

8.1 Desktop (Windows/macOS)

Splash screens are displayed in a separate window centred on the main display, while the start-up
continues behind these. The processing of ActionScript is delayed until after the splash screen has
been removed.

8.2 Android

The splash screen is displayed during start-up and happens immediately the runtime library has been
loaded. After a slight delay the initial SWF file is loaded in and when processing for this starts, the
splash screen is removed.

8.3 iOS

The splash screen is implemented as a launch storyboard with the binary storyboard and related
assets included in the SDK. This has implications for those who are providing their own storyboards or
images in an Assets.car file:

- If you are on the ‘free tier’ then the AIR developer tool will ignore any launch storyboard you
have specified within your application descriptor file, or provided within the file set for
packaging into the IPA file.

- If you are creating an Assets.car file, then you need to add in the AIR splash images from the
SDK which are in the “lib/aot/res” folder. These should be copied and pasted into your
“.xcassets” folder in the Xcode project that you are using for creation of your assets.

Troubleshooting:

Message from ADT: “Warning: free tier version of AIR SDK will use the HARMAN launch
storyboard” – this will be displayed if a <UILaunchStoryboardName> tag has been added via the
AIR application descriptor file. The tag will be ignored and the Storyboard from the SDK will be used
instead.

Message from ADT: “Warning: removing user-included storyboard "[name]"” will be displayed
if there was a Storyboardc file that had been included in the list of files to package: this will be
removed.

Message from ADT: "Warning: free tier version of AIR SDK must use the HARMAN launch
storyboard" – this will be displayed if the Storyboardc file in the SDK has been replaced by a user-
generated one.

If a white screen is shown during start-up: check that the HARMAN splash images are included in
your assets.car file. Note that the runtime may shut down if it doesn’t detect the appropriate splash
images.

The runtime may also shut down for customers with a commercial license if a storyboard has been
specified within the AIR descriptor file but not added via the list of files to package into the IPA file.

	1 Release Overview
	1.1 Key changes
	1.2 Deployment
	1.3 Limitations
	1.4 Feedback
	1.5 Notes

	2 Release Information
	2.1 Delivery Method
	2.2 The Content of the Release
	2.2.1 Detailed SW Content of the Release
	2.2.2 Delivered Documentation
	2.2.3 Build Environment

	2.3 AIR for Linux – Restrictions
	2.4 AIR for Flex users

	3 Summary of changes
	3.1 Runtime and namespace version
	3.2 Build Tools
	3.3 AS3 APIs
	3.4 Features
	3.5 Bug Fixes
	3.5.1 Release 51.0.0.1 and 51.0.0.2

	4 Android builds
	4.1 AAB Target
	4.2 Play Asset Delivery
	4.3 Android Text Rendering
	4.4 Android File System Access

	5 Windows builds
	6 MacOS builds
	7 iOS support
	8 Splash Screens
	8.1 Desktop (Windows/macOS)
	8.2 Android
	8.3 iOS

