

Public 1(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Adobe AIR SDK Release Notes

Version 51.0.1.1
Date 26 April 2024
Document ID HCS19-000287
Owner Andrew Frost

Public 2(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Table of contents
1 Release Overview ...3
1.1 Key changes ...3
1.2 Deployment ..3
1.3 Limitations ..4
1.4 Feedback ..4
1.5 Notes ..4

2 Release Information ...5
2.1 Delivery Method ...5
2.2 The Content of the Release ...5
2.3 AIR for Linux – Restrictions ...6
2.4 AIR for Flex users ..6

3 Summary of changes ...7
3.1 Runtime and namespace version ..7
3.2 Build Tools ..7
3.3 AS3 APIs ..7
3.4 Features ...7
3.5 Bug Fixes... 10

4 Android builds ... 14
4.1 AAB Target .. 14
4.2 Play Asset Delivery ... 14
4.3 Android Text Rendering .. 15
4.4 Android File System Access ... 16

5 Windows builds ... 18

6 MacOS builds... 19

7 iOS support .. 20
7.1 32-bit vs 64-bit ... 20
7.2 MacOS remote linking from Windows .. 20

8 Splash Screens ... 23
8.1 Desktop (Windows/macOS) .. 23
8.2 Android .. 23
8.3 iOS ... 23

Public 3(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

1 Release Overview
This is the first redistributable release of version 51.x of the AIR SDK. This can be used for production
applications, it includes all of the recent stability fixes and will be the baseline for future 51.0 releases.

It is based on 51.0.0.4 and includes some minor functional updates as well as the bug fixes. Updates
from the latest 50.2 release (50.2.5.1) have also been pulled into this version.

The “Key changes” section below, as well as the features/fixes details later in the document, only
reference changes between 51.0.0.x and 51.0.1.x so please refer back to the latest 51.0.0 release
notes for earlier updates.

1.1 Key changes

There are a number of bug fixes to improve stability, several of which are pulled in from the 50.2
branch. The main other changes are:

Privacy Manifest files. The 50.2.5 branch was created so that ADT generated privacy manifest files
in IPA packages, based on the defaults for the AIR runtime plus any privacy manifests that were
present in ANE bundles. This release additionally supports a new “PrivacyAdditions” tag within the
iPhone section of an application descriptor file, which allows developers to include their own
additional elements that will be merged in with the other sources.

Display colour profile conversions. This is currently only available on macOS but a new
ActionScript API allows a BitmapData object to be converted so that it takes into account the colour
profiles that may be set up on different screens. (Note that on Windows, the “smart display” feature is
likely to perform this operation anyway due to the defaults within DirectX).

Remote linking for IPA files. Further to the earlier options to allow developers who are using
Windows to be able to link an Apple binary on a mac machine and then package the executable into
the IPA file, this can now be fully automated. There are some set-up steps that will need to be done
manually to start with; details are given in section 7.2.2.

A number of other updates have been made to allow other “manifestAddition” entries/attributes within
the Android section of the application descriptor.

For the other/earlier changes within the 51.x release branch, please visit
https://github.com/airsdk/Adobe-Runtime-Support/discussions/3081

1.2 Deployment

To obtain the release, it is recommended that developers install the AIR SDK Manager. Whilst the
monolithic zip files will still be available from the https://airsdk.harman.com website, this may be
updated less frequently in the future with only major releases. The goal is for the AIR SDK Manager to
help us publish minor updates/fixes with a quicker cadence without resulting in a large amount of
effort and data downloads.

The AIR SDK Manager is now available from the https://airsdk.dev website, as part of the “getting
started” instructions, or directly from github at: https://github.com/airsdk/airsdkmanager-releases

https://github.com/airsdk/Adobe-Runtime-Support/discussions/3081
https://airsdk.harman.com/
https://airsdk.dev/
https://github.com/airsdk/airsdkmanager-releases

Public 4(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

1.3 Limitations

For macOS users on 10.15+, the SDK may not work properly unless the quarantine setting is
removed from the SDK: $ xattr -d -r com.apple.quarantine /path/to/SDK

Please note that there is no longer support for 32-bit IPA files, all IPAs will use just 64-bit binaries now
so older iPhones/iPads may not be supported.

Android development should now be performed with an installation of Android Studio and the SDK
and build tools, so that the new build mechanism (using Gradle and the Android Gradle Plug-in) can
use the same set-up as Android Studio.

Linux runtimes are built using Ubuntu 16 for x86_64 variants in order to provide maximum
compatibility; however for arm64, the build environment uses Ubuntu 22 which then restricts usage to
similar versions of Linux (i.e. that have glibc version 2.34 or later).

1.4 Feedback

Any issues found with the SDK should be reported to adobe.support@harman.com or preferably
raised on https://github.com/airsdk/Adobe-Runtime-Support/issues.

The website for AIR SDK is available at: https://airsdk.harman.com with the developer portal available
under https://airsdk.dev

1.5 Notes

Contributors to the https://airsdk.dev website would be very welcomed: this portal is being built up as
the repository of knowledge for AIR and will be taking over from Adobe’s developer websites

The AS3 documentation for AIR is updated and now also available under this site:
https://airsdk.dev/reference/actionscript/3.0/

We will continue to provide the shared AIR runtime for Windows/macOS; however, this is not a
recommended deployment mechanism, it is prefereably to create native installers based on the
”bundle” deployments.

On MacOS in particular, the use of the shared AIR runtime to ‘install’ a .air file will not create a signed
application, hence new MacOS versions may block these from running. To ensure a properly signed
MacOS application is created, the “bundle” option should be used with native code-signing options
(i.e. those appearing after the “-target bundle” option) having a KeychainStore type with the alias
being the full certificate name.

mailto:adobe.support@harman.com
https://github.com/airsdk/Adobe-Runtime-Support/issues
https://airsdk.harman.com/
https://airsdk.dev/
https://airsdk.dev/
https://airsdk.dev/reference/actionscript/3.0/

Public 5(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

2 Release Information
2.1 Delivery Method

This release shall be delivered via the AIR SDK website: https://airsdk.harman.com/download

The update will also be available via the AIR SDK Manager. The latest version of this can be
downloaded from https://github.com/airsdk/airsdkmanager-releases/releases.

2.2 The Content of the Release

2.2.1 Detailed SW Content of the Release

Component Name 51.0.1.1

Core Tools 3.1.0

AIR Tools 3.0.0

Windows platform package 3.1.0

MacOS platform package 3.1.0

Linux platform package 3.1.0

Android platform package 3.1.0

iPhone platform package 3.1.0

2.2.2 Delivered Documentation

Title Document Number Version

Adobe AIR SDK Release Notes HCS19-000287 51.0.1

2.2.3 Build Environment

Platform Build Details

Android Target SDK Version: 33

Minimum SDK Version: 16 (ARMv7, x86); 21 (ARMv8, x86_64)

Platform Tools: 28.0.3

Build Tools: 33.0.2

SDK Platform: Android-33

Note – these are the versions we use to build the AIR SDK and runtime,
we also recommend developers match the same ‘target SDK’ version as
here.

iOS iPhoneOS SDK Version: 17.4

iPhoneSimulator SDK Version: 17.4

XCode Version: 15.3

Minimum iOS Target: 12.0

https://airsdk.harman.com/download
https://github.com/airsdk/airsdkmanager-releases/releases

Public 6(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

tvOS tvOS SDK Version: 17.4

tvSimulator SDK Version: 17.4

XCode Version: 15.3

Minimum tvOS Target: 12.0

MacOS MacOS SDK Version: 14.4

XCode Version: 15.3

Minimum macOS Target: 10.13

Windows Visual Studio Version: 14.0.25431.01 Update 3

Linux GCC Version 5.4.0 (Ubuntu 16.04.1 – x86_64)

 11.4.0 (Ubuntu 22.04.3 – arm64)

2.3 AIR for Linux – Restrictions

The AIR SDK now supports both x86_64 and arm64 based Linux platforms. These are only available
to developers with a commercial license to the SDK, and have some restrictions:

- No “shared runtime” support: applications would need to be built as ‘bundle’ packages with
the captive runtimes

- Packaging into native installers (“native” target type for .deb or .rpm files) is currently not
working: please create a “bundle” target and use Linux tools to distribute these

- No “StageWebView” component.

2.4 AIR for Flex users

HARMAN have continued Adobe’s strategy of issuing two AIR SDKs per platform: the first of these
(“AIRSDK_[os].zip”) contains the newer ActionScript compiler and is a full, self-contained SDK for
compiling and packaging AIR applications. The second of these is for combination with the Flex SDK
(“AIRSDK_Flex_[os].zip”) which doesn’t include a number of the files necessary for
ActionScript/MXML compilation. These SDKs should be extracted over the top of an existing, valid
Flex SDK.

The original instructions from Adobe are at https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-
air-sdk-flex-sdk.html but a few alterations to this are needed to Step 4 if running on macOS. For this
platform, the downloaded AIR SDK zip needs to be expanded to a temporary area and then the copy
command needs to copy symbolic links as links rather than resolving them to files. This can be done
using a capital ’R’ rather than lowercase, hence:

cp -Rf /tmp/AIRSDK_Flex_MacOS/* /path-to-empty-FLEXSDK-directory

Please note that the config files (air-config.xml, airmobile-config.xml, flex-config.xml) may need to be
updated to support new features and updates in AIR or in dependencies such as ANEs. For example
to ensure the correct SWF version is output, the below line would need to be updated (e.g. to ‘50’ for
AIR 50.x, or ‘44’ for AIR 33.1, etc):
<swf-version>14</swf-version>

https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-air-sdk-flex-sdk.html
https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-air-sdk-flex-sdk.html

Public 7(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

3 Summary of changes
3.1 Runtime and namespace version

Namespace: 51.0

SWF version: 51

The namespace and SWF version updates are made across all platforms and may be used to access
the updated ActionScript APIs that have been introduced with AIR version 51.0. The namespace update
is required for opening any SWF file that’s got a SWF version of 51, or when using any of the new XML
application descriptor flags.

3.2 Build Tools

The Android build tools and platform used to create the AIR runtime files has been updated to
Android-33 with the default target SDK now set to this level in the generated Android manifest files.

Xcode 15.3 and the latest macOS and iphoneOS/tvOS SDKs are now being used to build the AIR
SDK. Please note when the update was made to use Xcode 15.0, the minimum iOS/tvOS target
version was increased to 12. Additional note: these are the versions that AIR itself is built with. The
versions shown in IPA files are manually injected by ADT and don’t (yet) take the version codes from
the local build environment. See Issue #3030 (github.com).

The build system for this is on a version of macOS that doesn’t support 32-bit processes hence we
cannot generate the 32-bit versions of the stub files. This means that we can no longer support older
32-bit iPhone/iPad devices.

3.3 AS3 APIs

Note that one further addition has been made beyond the APIs already created for AIR 51.0, which is
the addition of a function to the BitmapData class:
function convertColorProfile(source : Screen, destination : Screen) : BitmapData;

With this addition and the production release of AIR 51.0, the AS3 APIs will be locked down so that
the “airglobal.swc” file should not change between all AIR 51.0 production releases and anything built
using an AIR 51.0 production release should run on any AIR 51.0 production runtime.

3.4 Features

Reference: AIR-6288

Title: Implementation of digests and encryption using CommonCrypto
for mac/ios

Applies to: macOS and iOS runtime components

Description: Functionality for “Digest” and “Encryption” classes had been missing on iOS;
this has now been implemented using the Apple CommonCrypto library, and
this implementation is now also used for macOS builds.

https://github.com/airsdk/Adobe-Runtime-Support/issues/3030

Public 8(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: AIR-6979

Title: Colour profile conversion for macOS displays

Applies to: MacOS runtime components

Description: Rather than the earlier implementation where an external JPEG was
modified during loading, to match the colour profile of the main display, the
new BitmapData.convertColorProfile() method has been added to allow
conversions between different displays. Typically, to use this, if an image has
been loaded via “Loader”, it can then be displayed using:

var original : BitmapData, converted : BitmapData;
original = (loader.content as Bitmap).bitmapData;
converted = original.convertColorProfile(null, screen);
addChild(new Bitmap(converted));

where “screen” is the flash.dispay.Screen object on which the current
window is being displayed.

Reference: Github-907 https://github.com/airsdk/Adobe-Runtime-Support/issues/907

Title: Adding support for fileType icon size 256x256

Applies to: Core build tools

Description: The “fileType” icon definitions had been prevented from supporting 256x256
icon sizes due to the ADT manifest validation; this has been updated to allow
the “image256x256” value to be provided for file types.

Reference: Github-3010 https://github.com/airsdk/Adobe-Runtime-Support/issues/3010

Title: Provide mechanism for remote linking an IPA's executables on a
macOS machine

Applies to: Core build tools

Description: Enabling remote building on a mac computer, when using Windows.

See 7.2.2 for more details.

Reference: Github-3108 https://github.com/airsdk/Adobe-Runtime-Support/issues/3108

https://github.com/airsdk/Adobe-Runtime-Support/issues/907
https://github.com/airsdk/Adobe-Runtime-Support/issues/3010
https://github.com/airsdk/Adobe-Runtime-Support/issues/3108

Public 9(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Title: Updating AIR xml signatures to use SHA-256 for signed info

Applies to: Core build tools

Description: When generating a “.air” package, the code signature used by AIR had
previously been using SHA-1. However this is not considered suitable and so
a switch has been made to SHA-256. It should still be possible to install new
AIR packages built with this, using older versions of the shared AIR runtime,
although there are some known issues that appear to be certificate-specific
(and are therefore not considered to be caused by this change).

Reference: Github-3116 https://github.com/airsdk/Adobe-Runtime-Support/issues/3116

Title: Adding support for PrivacyAdditions tag

Applies to: Core build tools

Description: Within the “<iPhone>” section of an application descriptor, a new element
can be used, “PrivacyAdditions”. This works in a similar way to the
“InfoAdditions” mechanism, where any entries that are created here will be
merged in with other privacy manifest information (from the default AIR
runtime plus from any ANEs) – the merging is additive where necessary i.e.
if a privacy manifest entry can contain multiple options or an array, then new
entries will be added without removing previous ones. Otherwise, for privacy
manifest entries that can only have one value, the values given here will
have the priority.

Reference: Github-3171 https://github.com/airsdk/Adobe-Runtime-Support/issues/3171

Title: Allow Android manifestAdditions to override activity's
screenOrientation attribute

Applies to: Core build tools

Description: The Android activity’s “screenOrientation” attribute can now be overridden by
manifestAdditions in the application descriptor. The default from the AIR
templates is “user”.

Reference: Github-3172 https://github.com/airsdk/Adobe-Runtime-Support/issues/3172

Title: Mac bundle creation to generate CFBundleDisplayName tag

Applies to: macOS runtime component

https://github.com/airsdk/Adobe-Runtime-Support/issues/3116
https://github.com/airsdk/Adobe-Runtime-Support/issues/3171
https://github.com/airsdk/Adobe-Runtime-Support/issues/3172

Public 10(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: When creating a macOS native application, the Info.plist file will now contain
a “CFBundleDisplayName” as well as the “CFBundleName”, both of which
take their value from the application descriptor “name” field.

Reference: Github-3173 https://github.com/airsdk/Adobe-Runtime-Support/issues/3173

Title: Mac bundle creation to generate CFBundleSupportedPlatforms tag

Applies to: macOS runtime component

Description: When creating a macOS native application, the Info.plist file will now contain
a “CFBundleSupportedPlatforms” tag with the value “MacOSX”. A future
version of AIR may include the ability for this tag to be overwritten via the
InfoAdditions field.

3.5 Bug Fixes

3.5.1 Release 51.0.1.1

Reference: AIR-6054

Title: Ensuring zip extraction creates subfolders where needed

Applies to: All runtime components

Description: When a zip file did not contain explicit entries for each directory (as opposed
to for a file), the folders were not being created on the target filesystem
which meant that files in those subfolders were not then written.

Reference: Github-2409 https://github.com/airsdk/Adobe-Runtime-Support/issues/2409

Title: Including new AS3 implementations into tvOS runtime

Applies to: iOS runtime components

Description: The tvOS builds had not been correctly updated to define all of the new AS3
API symbols. This has been updated so that tvOS applications should now
link correctly.

https://github.com/airsdk/Adobe-Runtime-Support/issues/3173
https://github.com/airsdk/Adobe-Runtime-Support/issues/2409

Public 11(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: Github-2903 https://github.com/airsdk/Adobe-Runtime-Support/issues/2903

Title: Fixing instability when breaking into a debugger on uncaught
error

Applies to: All runtime components

Description: Some logic within the debugger, where an uncaught error was being trapped
by the debugger and then the debugger started querying the local variable
stack, caused a null pointer dereference within the AIR runtime. The code
here has been made more robust to ensure that these null values cause the
debugger to continue without the instability.

Reference: Github-2976 https://github.com/airsdk/Adobe-Runtime-Support/issues/2976

Title: Adding 'property' as a supported Android Manifest tag

Applies to: Core build tools

Description: ADT had been throwing an erorr when trying to set a “property” within the
manifestAdditions in an application descriptor file. This is a valid manifest
value though and has now been included in the supported tags.

Reference: Github-3049 https://github.com/airsdk/Adobe-Runtime-Support/issues/3049

Title: Ensuring we avoid the hang on debugger on iOS with nagle check

Applies to: All runtime components

Description: A number of updates were needed here, firstly to avoid hanging on iOS, and
also to prevent an instability when running with ADL on some macOS
machines.

Reference: Github-3098 https://github.com/airsdk/Adobe-Runtime-Support/issues/3098

Title: Ensuring a/v from NetStream.appendBytes() works with
SoundMixer.computeSpectrum()

Applies to: All runtime components

https://github.com/airsdk/Adobe-Runtime-Support/issues/2903
https://github.com/airsdk/Adobe-Runtime-Support/issues/2976
https://github.com/airsdk/Adobe-Runtime-Support/issues/3049
https://github.com/airsdk/Adobe-Runtime-Support/issues/3098

Public 12(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: Previously, the code to compute the audio spectrum would have considered
this a security risk due to the application not being considered to “own” the
audio. This has been updated for the specific use case where appendBytes()
is being used (rather than when the sound is loaded from a different
domain).

Reference: Github-3126 https://github.com/airsdk/Adobe-Runtime-Support/issues/3126

Title: Fixing issue with Loader.loadBytes() throwing errors in
Workers

Applies to: All runtime components

Description: Primarily an issue on macOS, there had been a problem with the use of
Loader.loadBytes() when running from a background Worker thread,
because this had been triggering the creation of a Stage object and display
lists elements cannot run on background Workers.

Reference: Github-3154 https://github.com/airsdk/Adobe-Runtime-Support/issues/3154

Title: Preventing iOS worker crash caused by background alert

Applies to: iOS runtime component

Description: If a worker is set up on iOS using a SWF file that contains ActionScript, this
cannot then be executed. However, the background worker had been
attempting to display a notification to the user which is not permitted in the
background thread; instead, the worker will now just throw an ActionScript
error and not start running.

Reference: Github-3160 https://github.com/airsdk/Adobe-Runtime-Support/issues/3160

Title: Ensuring Linux bundles can be created even if the rpm/deb
identification checks fail

Applies to: Linux runtime component

Description: On arch linux, the checks for a rpm/deb platform had been failing – however,
this should not have impacted the creation of a “bundle” package, so the
check has been moved so it only raises the error when that is blocking
functionality (i.e. if someone tried creating a “native” Linux installer).

Reference: Github-3195 https://github.com/airsdk/Adobe-Runtime-Support/issues/3195

https://github.com/airsdk/Adobe-Runtime-Support/issues/3126
https://github.com/airsdk/Adobe-Runtime-Support/issues/3154
https://github.com/airsdk/Adobe-Runtime-Support/issues/3160
https://github.com/airsdk/Adobe-Runtime-Support/issues/3195

Public 13(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Title: Fixing crash in Worker start-up caused by lack of Stage

Applies to: All runtime components

Description: A side-effect of github-3126, this change ensures that the Worker is not
attempting to send stage-related events as it starts up. Worker objects do not
have display lists and there should be no way for them to access the stage.

Public 14(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

4 Android builds
4.1 AAB Target

Google introduced a new format for packaging up the necessary files and resources for an application
intended for uploading to the Play Store, called the Android App Bundle. Information on this can be
found at https://developer.android.com/guide/app-bundle

AIR now supports the App Bundle by creating an Android Studio project folder structure and using
Gradle to build this. It requires an Android SDK to be present and for the path to this to be passed in
to ADT via the “-platformsdk” option (or set via a config file – it also checks in the default SDK
download location). It also needs to have a JDK present and available, and will attempt to find this
either from configuration files or via the JAVA_HOME environment variable (or if there is an Android
Studio installation present in the default location, using the JDK provided by that).

To generate an Android App Bundle file, the ADT syntax is similar to the “apk” usage:

adt -package -target aab <signing options> output.aab <app descriptor and files> [-extdir
<folder>] -platformsdk <path_to_android_sdk>

No “-arch” option can be provided, as the tool will automatically include all of the architecture types.
Signing options are optional for an App Bundle.

Note that the creation of an Android App Bundle involves a few steps and can take significantly longer
than creating an APK file. We recommend that APK generation is still used during development and
testing, and the AAB output can be used when packaging up an application for upload to the Play
Store.

ADT allows an AAB file to be installed onto a handset using the “-installApp” command, which
wraps up the necessary bundletool commands that generate an APKS file (that contains a set of APK
files suitable for a particular device) and then installs it. If developers want to do this manually,
instructions for this are available at https://developer.android.com/studio/command-
line/bundletool#deploy_with_bundletool, essentially the below lines can be used:

java -jar bundletool.jar build-apks --bundle output.aab --output output.apks --connected-
device

java -jar bundletool.jar install-apks --apks=output.apks

Note that the APK generation here will use a default/debug keystore; additional command-line
parameters can be used if the output APK needs to be signed with a particular certificate.

4.2 Play Asset Delivery

As part of an App Bundle, developers can create ”asset packs” that are delivered to devices
separately from the main application, via the Play Store. For information on these, please refer to the
below link:

https://developer.android.com/guide/playcore/asset-delivery

In order to create asset packs, the application XML file needs to be modified within the <android>
section, to list the asset packs and their delivery mechanism, and to tell ADT which of the files/folders
being packaged should be put into which asset pack.

For example:
<assetPacks>

https://developer.android.com/guide/app-bundle
https://developer.android.com/studio/command-line/bundletool#deploy_with_bundletool
https://developer.android.com/studio/command-line/bundletool#deploy_with_bundletool
https://developer.android.com/guide/playcore/asset-delivery

Public 15(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

 <assetPack id="ImageAssetPack" delivery="on-demand"
folder="AP_Images"/>

</assetPacks>

This instruction would mean that any file found in the ”AP_Images” folder would be redirected into an
asset pack with a name ”ImageAssetPack”. The delivery mechanisms can be ”on-demand”, ”fast-
follow” or ”install-time” per the Android specifications.

Note that assets should be placed directly into the asset pack folder as required, rather than adding
an additional ”src/main/assets” folder structure that the Android documentation requires. This folder
structure is created automatically by ADT during the creation of the Android App Bundle.

The asset pack folder needs to be provided as a normal part of the command line for the files that
should be included in a package. So for example if the asset pack folder was ”AP_Images” and this
was located in the root folder of your project, the command line would be:
adt -package -target aab MyBundle.aab application.xml MyApp.swf AP_Images
[then other files, -platformsdk directive, etc]

If there were a number of asset packs and all of the relevant folders were found under an
”AssetPacks” folder in the root of the project, the command line would be:
adt -package -target aab MyBundle.aab application.xml MyApp.swf -C
AssetsPacks . [then other files, -platformsdk directive, etc]

To access the asset packs via the Android Asset Pack Manager functionality, an ANE is available via
the AIR Package Manager tool. See https://github.com/airsdk/ANE-PlayAssetDelivery/wiki

4.3 Android Text Rendering

Previously, the rendering of text on Android had been handled via a native library built into the C++-
based AIR runtime file. This had some restrictions and issues with handling fonts, which caused major
problems with Android 12 when the font fallback mechanism was changed and the native code no
longer coped with this. To resovle this, a new text rendering mechanism has been implemented that
uses public Android APIs in order to set up the fonts and to render the text.

The new mechanism uses JNI to communicate between the AIR runtime and the Android graphics
classes for this, and has some differences with the legacy version. One of the changes that has been
made is to correct the display of non-colorized text elements when rendering to bitmap data: in earlier
builds, if some text included an emoji with a fixed color (e.g. ”flames” that are always yellow/orange
even if you request a green font color) then these characters appeared blue, due to the different pixel
formats used by Android vs the AIR BitmapData objects. With the new mechanism, AIR correctly
renders these characters to BitmapData (although the problem still remains when rendering device
text to a ’direct’ mode display list).

Some developers may not want to switch to this new mechanism yet, and others may want their
applications to always use it. Some would perhaps want it only when absolutely necessary i.e. from
Android 12 onwards. To cope with this request, there is a new application descriptor setting that can
be used: ”<newFontRenderingFromAPI>” which shoudl be placed within the <android> section of the
descriptor XML. The property of this can be used to set the API version on which the new rendering
mechanism takes place. The default value is API level 31 which corresponds to Android 12.0 (see
https://source.android.com/setup/start/build-numbers). So for example if you always want devices to
use the new mechanism, you can add:

<newFontRenderingFromAPI>0</newFontRenderingFromAPI>

whereas if you never want devices to use this, you could add:
<newFontRenderingFromAPI>99999</newFontRenderingFromAPI>

https://github.com/airsdk/ANE-PlayAssetDelivery/wiki
https://source.android.com/setup/start/build-numbers

Public 16(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

4.4 Android File System Access

In the earlier versions of Android, it was possible to use the filesystem in a similar way to a Linux
computer, but with a set of restrictions that had a fairly high-level granularity:

- It was possible to read/write to an application’s private storage location. AIR exposes this via
”File.applicationStorageDirectory”.

- If the app requested the ’read/write storage’ permission, the app could then read and write in
the user’s shared storage location and to removable storage. The main home folder was
accessible via ”File.userDirectory” or ”File.documentsDirectory”, and later AIR
33.1 added ”File.applicationRemovableStorageDirectory”.

- Later, this was updated such that the user had to also grant permission via a system pop-up
message. To trigger this pop-up, AIR developers could use ”File.requestPermission()”

With the introduction of “scoped storage” however, a lot of this has changed. Android files are treated
in a similar way to other resources, with URLs using the “content://” schema which can refer either to
filesystem-backed files, or to transient resources, or elements within other storage mechanisms such
as databases and libraries. Permission to access each resource depends upon the creator of that
resource, and by default it’s not possible for an application to open a file that another application had
created. Permissions for the top-level internal storage (i.e. “File.documentsDirectory”) have
been changed so that applications cannot create entries here but must use sub-folders of these (a set
of standard sub-folders is generally created by the OS).

Within AIR, we have been attempting to add support for the “content://” URIs, and to switch the File
class “browseForXXX” functions so that they use the new intent-based mechanisms for selecting
files to open and save, or to select a folder. Within these calls, we are also requesting the appropriate
read/write permissions (and persisting these so that they can be used in the future). This means that it
should be possible to call “browseForOpen()” and allow the user to select a shared file that can
then always be opened (for reading). Equally a “browseForDirectory()” call should mean that an
application then has read/write access into the selected directory and its sub-tree.

Requesting file system permissions has to be handled in a similar way, with permissions either
granted for a file or for a folder tree. The “File.requestPermission()” function therefore looks at
the native path of the File object this is called on, and decides whether to show a file open intent (if
there’s a normal path or URL in the nativePath property), or to show a folder selection intent (if the
path ends in a forward-slash), or whether to just ignore the call with a ‘granted’ response and then
wait for later permission requests for individual files (if the File object has not had a nativePath set).
This last option is intended to allow apps to work across different Android versions and is the
recommended option: early in the application lifecycle, create a new File and call
requestPermissions(): if the app is running on an earlier Android version, the permission pop-up
will appear, otherwise the app will need to request specific file access later on via the
“browseForXXX” functions or by requesting permission for a specific file. Sadly it isn’t possible to
ensure that the user only gives a yes/no response for these file/folder open intents, they are able to
browse for other files, so it may be that the file the user selects is not the one you are trying to open. If
this is detected, the permission status event will show as ‘denied’, so if you are happy for the user to
choose a different file, use “browseForOpen()” rather than “requestPermission()”.

There is an exception to having to use scoped storage and the storage access framework, which is if
an application has the “MANAGE_EXTERNAL_FILES” permission. This permission is intended for
utilities such as file manager apps and anti-virus scanners that have a legitimate need to access all
the (shared storage) files on the device, but if an app requests this permission and is submitted to the
Play Store, but doesn’t justify itself, then the submission is likely to be rejected.

Some applications are not distributed via the Play Store though, at which point this permission can be
used to turn the behaviour back to how it used to be in earlier Android versions. The

Public 17(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

“File.requestPermission()” capability has been overridden in the cases where AIR detects this
permission has been requested in the manifest, and it will now display the appropriate dialog to ask
the user to turn on the ‘all files’ access for this app. Once this has been granted (asynchronously), it
would then be possible to create, read and write files and folders including in the root storage device.

Public 18(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

5 Windows builds
The SDK now includes support for Windows platforms, 32-bit and 64-bit. We recommend that
developers use the “bundle” option to create an output folder that contains the target application. This
needs to be packaged up using a third party installer mechanism, in order to provide something that
can be easily distributed to and installed by end users. HARMAN are looking at adapting the previous
AIR installer so that it would be possible for the AIR Developer Tool to perform this step, i.e. allowing
developers to create installation MSI files for Windows apps in a single step.

Instructions for creating bundle packages are at:

https://help.adobe.com/en_US/air/build/WSfffb011ac560372f709e16db131e43659b9-8000.html

Note that 64-bit applications can be created using the “-arch x64” command-line option, to be added
following the “-target bundle” option.

https://help.adobe.com/en_US/air/build/WSfffb011ac560372f709e16db131e43659b9-8000.html

Public 19(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

6 MacOS builds
MacOS builds are provided only as 64-bit versions. A limited shared runtime option is being prepared
so that existing AIR applications can be used on Catalina, but the expectation for new/updated
applications is to also use the “bundle” option to distribute the runtime along with the application, as
per the above Windows section.

Note that Adobe’s AIR 32 SDK can be used on Catalina if the SDK is taken out of ‘quarantine’ status.
For instructions please see an online guide such as:

https://www.soccertutor.com/tacticsmanager/Resolve-Adobe-AIR-Error-on-MacOS-Catalina.pdf

AIR SDK now supports MacOS Big Sur including on the new ARM-based M1 hardware: applications
will be generated with ‘universal binaries’ and most of the SDK tools are now likewise built as
universal apps.

https://www.soccertutor.com/tacticsmanager/Resolve-Adobe-AIR-Error-on-MacOS-Catalina.pdf

Public 20(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

7 iOS support
7.1 32-bit vs 64-bit

For deployment of AIR apps on iOS devices, the AIR Developer Tool will use the provided tools to
extract the ActionScript Byte Code from the SWF files, and compile this into machine code that is then
linked with the AIR runtime and embedded into the IPA file. The process of ahead-of-time compilation
depends upon a utility that has to run with the same processor address size as the target architecture:
hence to generate a 32-bit output file, it needs to run a 32-bit compilation process. This causes a
problem on MacOS Catalina where 32-bit binaries will not run.

Additionally, due to the generation of stub files from the iPhone SDK that are used in the linking
process – which are created in a similar, platform-specific way – it is not possible to create armv7-
based stub files when using Catalina or later. From release 33.1.1.620, the stub files are based on
iOS15 and are purely 64-bit. This means that no 32-bit IPAs can be generated, even when running on
older macOS versions or on Windows.

7.2 MacOS remote linking from Windows

Due to a number of updates from Apple around the mach-o linker, and the movement of symbols
between different component libraries, it has become increasingly problematic to link Apple binaries
on a Windows computer. Originally, Adobe had cross-compiled the “ld64” Apple linker, but without
support for the “TBD” format that Apple use for the iPhoneOS/AppleTVOS SDKs. To work around this
limitation, the AIR SDK includes “stub” binaries for the SDKs – but it is not then possible to support
the movement of symbols i.e. where a particular symbol is found in different frameworks for different
iOS versions.

Using LLVM’s linker, which supports the mach-o format, it was also found that Apple restrictions had
been preventing some applications from being published via the App Store due to a difference in how
symbols were found/stored, and the known/unsupported issues in LLVM meant that this is also not a
completely viable solution.

The solution that we will work with now is to use a mac machine to perform the link stage of the build
process. The rest of the development and build process can still occur on Windows but linking the AIR
application’s object files against the iPhone / AppleTV SDKs should be done on a mac.

There are two ways to achieve this: initially a manual mechanism to allow files to be pushed to a
macOS machine, linked via a script, and then the result copied back to the Windows machine where
the packaging command needs to be run again to pick up the binary. And with the release of 51.0.1
this is now possible to handle automatically within a single run of ADT, following some initial machine
configuration. Details on these two methods follow.

7.2.1 Manual copying and linking

There are a number of steps to the build process in this scenario.

1. Configure ADT to use a specific folder, into which all linker inputs will be placed.

To do this, edit the “adt.cfg” file (in your home folder under an “.airsdk” subfolder) and add a line:
“IPALinkFolder=c:/path/to/link/folder”. This must be the name of an existing folder, under
which subfolders will be created for each run of ADT. Note that you need to use forward-slashes, or
escaped backslashes (“\\”), due to how Java reads in property files.

2. Run your normal link command via ADT.

This will then generate a subfolder under your “IPALinkFolder” location, which contains a script file
and all the input files needed for the Apple linker.

Public 21(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

3. Copy this link folder to your macOS computer.

This can be done with SFTP/SCP or similar tools, or potentially you could have a network shared
folder set up.

4. On the macOS computer, run the linker.

Using a terminal window, you will first need to set an environment variable, “AIR_SDK_HOME”, and
then run the script that was generated by ADT. For example:

 export AIR_SDK_HOME=/Users/username/Downloads/AIR_SDK/AIRSDK_51.0.1

 ./linkerscript.sh

5. Copy the resulting file back onto the Windows PC.

The file should be called “linkerOutput” and should be an arm64 macho executable file.

6. Call ADT again, this time providing the linked file.

To do this, add the arguments “-use-linker-output path_to_linkerOutput”; this can go
within the normal input files list, or at the end of this (similar to “-extdir”).

ADT will then ignore the normal command to link the binary, and will use the provided executable in
order to package and sign the IPA file.

7. Clean up.

The folder that’s created under the “IPALinkFolder” location, as well as the linkerOutput file (and of
course the files that have been copied to the macOS machine) are not automatically deleted. So
these should be periodically cleaned up manually to avoid wasting disk space.

7.2.2 Programmatic remote linking

In order to automatically allow the Windows machine to connect to the macOS machine and to copy
files and drive the linker, a password-less mechanism will need to be set up to allow remote access
without any user interaction. This requires the use of SSH keys: unless a key-pair is created that
doesn’t have a passphrase, it will be necessary to use “ssh-agent” to store the passphrase and
associate this with the user’s Windows credentials.

To set this up (one time only):

1. Create a new key-pair (unless you want to use an existing pair).

On Windows, run “ssh-keygen” and provide a filename – the default is “id_rsa” but in this
walkthrough we shall use “adt_access”. It then prompts for a passphrase: if you leave this blank, you
will not need to follow the “ssh agent” steps below, but the recommendation would be to create a
suitably secure passphrase for this. You should then have two files, “adt_access” and
“adt_access.pub”.

2. Install the public key on the mac machine.

You can use sftp/scp for this. The key should be added into your “.ssh” folder – note that you need the
username of the mac machine, which we shall assume is just “user”. You will then need to configure
SSH to allow this public key to be used for connections: if you remote in (or just open a terminal) on
the mac, go into the “.ssh” folder, and run: “cat adt_access.pub >> authorized_keys”. This
adds the new key onto the end of the authorized keys list.

3. Set up ssh agent to provide the passphrase.

Firstly you will need to check that ssh-agent is running: open “Services” on the computer, and find an
entry with name “OpenSSH Authentication Agent”. This should be changed to “Automatic”, or
“Automatic (Delayed Start)” if you prefer, and if necessary, also started manually. The “Status” column
should show that this is running.

Public 22(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Then in a Windows console, run “ssh-add adt_access” and provide your passphrase.

Note that if you get an error message “Permissions for 'private-key.ppk' are too open”, you will need to
ensure that only the current user is able to access the private key file (“adt_access”). This means
adjusting the “Security” properties on this file, changing the owner of the file to the current local user
account, removing inheritance and inherited permissions, and removing all permissions for
users/groups other than the current local user. For more details, see the below link:

Windows SSH: Permissions for 'private-key' are too open - Super User

You can then test the connection by running “ssh -i adt_access user@mac_ip_address”,
which should then log on automatically without further prompting.

4. Provide the configuration to ADT.

 Now that you have the connectivity set up, you need to create a configuration file for AIR. You will
need to add two entries into the “adt.cfg” file that is in your “c:\users\username\.airsdk\” folder:
IPALinkFolder=c:/path/to/link/folder

RemoteLinkMachine=mac_ip_address

The first setting is to provide a location into which the linker will output all of the files. This is not
strictly necessary but will aid in debugging problems.

The second provides the network location of the remote machine onto which you’ve put the public ssh
key.

You will then need to create a configuration file with the name of this “mac_ip_address” network
address, with an “.cfg” extension, and put this into a subfolder “remote_link_configs” under the .airsdk
directory. For example:
C:\Users\username\.airsdk\remote_link_configs\192.168.1.3.cfg

The contents of this file should be:
CertPath=C:/path/to/private/key/adt_access

Username=user

SdkFolder=/Users/user/Documents/AIR_SDKs/AIRSDK_51.0.1

The “CertPath” value points to the private key that we’ve named “adt_access”, again please note the
use of forward-slashes or double-backslashes in the Windows path. “Username” is the user
associated with the key from when this was added to “authorized_keys”. And “SdkFolder” is the path
on the remote mac machine where an AIR SDK can be found. This path is only used for the runtime
libraries i.e. “libRuntimeHMAOT.arm-air.a” and “builtin_abc.arm64-air.o”, the linker won’t use this for
the actual link binary (ld64) or the stub files; instead, the remote script picks up your iPhoneOS SDK
using the “xcrun” utility.

Once that is all set up, you can use ADT as normal for IPA builds, and the remote linking will happen
in the background. If there are issues, please check the adt.log (or use AIR SDK Manager’s
“Troubleshooting” tab) and report an issue via Github.

Please do note that the link folders are not (currently) cleaned up with this approach, so the location
under the “IPALinkFolder”, and its copy that is pushed to the remote Mac device (with the same
name, within the user’s home folder) will still exist after the ADT process has completed. This will help
with debugging any issues, but we expect to change this in the future.

https://superuser.com/questions/1296024/windows-ssh-permissions-for-private-key-are-too-open

Public 23(23)
ADOBE AIR SDK RELEASE NOTES Version 51.0.1.1

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

8 Splash Screens
For our ‘free tier’ users, a splash screen is injected into the start-up of the AIR process, displaying the
HARMAN and AIR logos for around 2 seconds whilst the start-up continues in the background. There
are different mechanisms used for this on different platforms, the current systems are described
below.

8.1 Desktop (Windows/macOS)

Splash screens are displayed in a separate window centred on the main display, while the start-up
continues behind these. The processing of ActionScript is delayed until after the splash screen has
been removed.

8.2 Android

The splash screen is displayed during start-up and happens immediately the runtime library has been
loaded. After a slight delay the initial SWF file is loaded in and when processing for this starts, the
splash screen is removed.

8.3 iOS

The splash screen is implemented as a launch storyboard with the binary storyboard and related
assets included in the SDK. This has implications for those who are providing their own storyboards or
images in an Assets.car file:

- If you are on the ‘free tier’ then the AIR developer tool will ignore any launch storyboard you
have specified within your application descriptor file, or provided within the file set for
packaging into the IPA file.

- If you are creating an Assets.car file, then you need to add in the AIR splash images from the
SDK which are in the “lib/aot/res” folder. These should be copied and pasted into your
“.xcassets” folder in the Xcode project that you are using for creation of your assets.

Troubleshooting:

Message from ADT: “Warning: free tier version of AIR SDK will use the HARMAN launch
storyboard” – this will be displayed if a <UILaunchStoryboardName> tag has been added via the
AIR application descriptor file. The tag will be ignored and the Storyboard from the SDK will be used
instead.

Message from ADT: “Warning: removing user-included storyboard "[name]"” will be displayed
if there was a Storyboardc file that had been included in the list of files to package: this will be
removed.

Message from ADT: "Warning: free tier version of AIR SDK must use the HARMAN launch
storyboard" – this will be displayed if the Storyboardc file in the SDK has been replaced by a user-
generated one.

If a white screen is shown during start-up: check that the HARMAN splash images are included in
your assets.car file. Note that the runtime may shut down if it doesn’t detect the appropriate splash
images.

The runtime may also shut down for customers with a commercial license if a storyboard has been
specified within the AIR descriptor file but not added via the list of files to package into the IPA file.

	1 Release Overview
	1.1 Key changes
	1.2 Deployment
	1.3 Limitations
	1.4 Feedback
	1.5 Notes

	2 Release Information
	2.1 Delivery Method
	2.2 The Content of the Release
	2.2.1 Detailed SW Content of the Release
	2.2.2 Delivered Documentation
	2.2.3 Build Environment

	2.3 AIR for Linux – Restrictions
	2.4 AIR for Flex users

	3 Summary of changes
	3.1 Runtime and namespace version
	3.2 Build Tools
	3.3 AS3 APIs
	3.4 Features
	3.5 Bug Fixes
	3.5.1 Release 51.0.1.1

	4 Android builds
	4.1 AAB Target
	4.2 Play Asset Delivery
	4.3 Android Text Rendering
	4.4 Android File System Access

	5 Windows builds
	6 MacOS builds
	7 iOS support
	7.1 32-bit vs 64-bit
	7.2 MacOS remote linking from Windows
	7.2.1 Manual copying and linking
	7.2.2 Programmatic remote linking

	8 Splash Screens
	8.1 Desktop (Windows/macOS)
	8.2 Android
	8.3 iOS

