
 

Public 1(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

 

 

 

 

 

 

 

Adobe AIR SDK Release Notes 
 

 

 

 

 

 

 

 

 

 
Version 51.1.1.3 
Date 13 August 2024 
Document ID HCS19-000287 
Owner Andrew Frost 

  



 

Public 2(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

Table of contents 
1 Release Overview ............................................................................ 3 
1.1 Key changes ...................................................................................... 3 
1.2 Deployment ........................................................................................ 3 
1.3 Limitations .......................................................................................... 3 
1.4 Feedback ........................................................................................... 4 
1.5 Notes ................................................................................................. 4 

2 Release Information ......................................................................... 5 
2.1 Delivery Method ................................................................................. 5 
2.2 The Content of the Release ............................................................... 5 
2.3 AIR for Linux – Restrictions ................................................................ 6 
2.4 AIR for Flex users .............................................................................. 6 

3 Summary of changes ....................................................................... 7 
3.1 Runtime and namespace version ....................................................... 7 
3.2 Build Tools ......................................................................................... 7 
3.3 AS3 APIs............................................................................................ 7 
3.4 Features ............................................................................................. 7 
3.5 Bug Fixes ......................................................................................... 12 

4 Configuration File .......................................................................... 19 

5 Android builds ................................................................................ 21 
5.1 AAB Target ...................................................................................... 21 
5.2 Play Asset Delivery .......................................................................... 21 
5.3 Android Text Rendering ................................................................... 22 
5.4 Android File System Access ............................................................ 23 

6 Windows builds .............................................................................. 25 

7 MacOS builds ................................................................................. 26 

8 iOS support .................................................................................... 27 
8.1 32-bit vs 64-bit ................................................................................. 27 
8.2 MacOS remote linking from Windows .............................................. 27 

9 Splash Screens .............................................................................. 30 
9.1 Desktop (Windows/macOS) ............................................................. 30 
9.2 Android ............................................................................................ 30 
9.3 iOS ................................................................................................... 30 

 
 

 



 

Public 3(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

1 Release Overview 
Release 51.1.1.1 starts a new major/minor category of 51.1, with additional settings being added to 
the application descriptor file, and a number of new features being introduced. No changes have been 
made to the ActionScript APIs or versioning, so the SWF version for this continues to be 51. 

Release 51.1.1.2 contains a small number of critical bug fixes that had been found in 51.1.1.1. 
Updates for release 51.1.1.2 are displayed in a dark red font. 

Release 51.1.1.3 has a few further key fixes; updates are displayed in a blue font. 

1.1 Key changes 

The changes are fairly wide-ranging: one key change for Android users is that the target SDK API 
value is now set to 34 by default, removing the need to explicitly set this within your application 
descriptor file. Internally the build processes have also been updated to this, with a number of 
deprecated functions no longer being used. 

Another update for Android is on the ANE side, where it is now possible to have a single “Android” 
platform definition (unless using native/JNI shared libraries) where this can then be set to include 
either a JAR file as previously supported, or an AAR file. 

For Android TV, support has been added for the variable icon and banner sizes, with ADT 
automatically adjusting to use the different icon sizes for each resolution category for applications that 
are specified as supporting Android TV. 

The AS3 compiler has been updated, to fix a bug in ‘debugline’ instruction generation, to allow 
developers to restrict the ABC versioning/functionality to remove ‘float’ support, and to add support for 
a Unicode character definition of the form “\u{nnnnnn}” where ‘nnnnnn’ is a full Unicode character 
code that will be split into a surrogate pair of UTF-16 character codes.if necessary. 

There are a number of other fixes and updates, see sections 3.4 and 3.5 for details. 

Bug fixes for 51.1.1.2 can be found in section 3.5.2. 

Bug fixes for 51.1.1.2 can be found in section 3.5.3. The main fix is for iOS18 where a change in 
Apple’s font file format meant that Chinese fonts were being rejected by AIR; this update should allow 
Chinese character rendering again. 

1.2 Deployment 

To obtain the release, it is recommended that developers install the AIR SDK Manager. Whilst the 
monolithic zip files will still be available from the https://airsdk.harman.com website, this may be 
updated less frequently in the future with only major releases. The goal is for the AIR SDK Manager to 
help us publish minor updates/fixes with a quicker cadence without resulting in a large amount of 
effort and data downloads. 

The AIR SDK Manager is now available from the https://airsdk.dev website, as part of the “getting 
started” instructions, or directly from github at: https://github.com/airsdk/airsdkmanager-releases 

1.3 Limitations 

For macOS users on 10.15+, the SDK may not work properly unless the quarantine setting is 
removed from the SDK: $ xattr -d -r com.apple.quarantine /path/to/SDK 

https://airsdk.harman.com/
https://airsdk.dev/
https://github.com/airsdk/airsdkmanager-releases


 

Public 4(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

Please note that there is no longer support for 32-bit IPA files, all IPAs will use just 64-bit binaries now 
so older iPhones/iPads may not be supported. 

Android development should now be performed with an installation of Android Studio and the SDK 
and build tools, so that the new build mechanism (using Gradle and the Android Gradle Plug-in) can 
use the same set-up as Android Studio. 

Linux runtimes are built using Ubuntu 16 for x86_64 variants in order to provide maximum 
compatibility; however for arm64, the build environment uses Ubuntu 22 which then restricts usage to 
similar versions of Linux (i.e. that have glibc version 2.34 or later). 

1.4 Feedback 

Any issues found with the SDK should be reported to adobe.support@harman.com or preferably 
raised on https://github.com/airsdk/Adobe-Runtime-Support/issues. 

The website for AIR SDK is available at: https://airsdk.harman.com with the developer portal available 
under https://airsdk.dev 

1.5 Notes 

Contributors to the https://airsdk.dev website would be very welcomed: this portal is being built up as 
the repository of knowledge for AIR and will be taking over from Adobe’s developer websites 

The AS3 documentation for AIR is updated and now also available under this site: 
https://airsdk.dev/reference/actionscript/3.0/ 

We will continue to provide the shared AIR runtime for Windows/macOS; however, this is not a 
recommended deployment mechanism, it is prefereably to create native installers based on the 
”bundle” deployments. 

On MacOS in particular, the use of the shared AIR runtime to ‘install’ a .air file will not create a signed 
application, hence new MacOS versions may block these from running. To ensure a properly signed 
MacOS application is created, the “bundle” option should be used with native code-signing options 
(i.e. those appearing after the “-target bundle” option) having a KeychainStore type with the alias 
being the full certificate name. 

mailto:adobe.support@harman.com
https://github.com/airsdk/Adobe-Runtime-Support/issues
https://airsdk.harman.com/
https://airsdk.dev/
https://airsdk.dev/
https://airsdk.dev/reference/actionscript/3.0/


 

Public 5(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

2 Release Information 
2.1 Delivery Method 

This release shall be delivered via the AIR SDK website: https://airsdk.harman.com/download 

The update will also be available via the AIR SDK Manager. The latest version of this can be 
downloaded from https://github.com/airsdk/airsdkmanager-releases/releases. 

2.2 The Content of the Release 

2.2.1 Detailed SW Content of the Release 

Component Name 51.1.1.1 51.1.1.2 51.1.1.3 

Core Tools 3.2.0 3.2.1 3.2.2 

AIR Tools 3.0.0 

Windows platform package 3.2.0 3.2.1 3.2.2 

MacOS platform package 3.2.0 3.2.1 3.2.2 

Linux platform package 3.2.0 3.2.1 3.2.2 

Android platform package 3.2.0 3.2.1 3.2.2 

iPhone platform package 3.2.0 3.2.1 3.2.2 

2.2.2 Delivered Documentation 

Title Document Number Version  

Adobe AIR SDK Release Notes HCS19-000287 51.1.1 

2.2.3 Build Environment 

Platform Build Details 

Android Target SDK Version:  34 

Minimum SDK Version:  21 

Platform Tools:   28.0.3 

Build Tools:   34.0.0 

SDK Platform:   Android-34 

Note – these are the versions we use to build the AIR SDK and runtime, 
we also recommend developers match the same ‘target SDK’ version as 
here. 

iOS iPhoneOS SDK Version: 17.5 

iPhoneSimulator SDK Version: 17.5 

XCode Version:   15.4 

Minimum iOS Target:  12.0 

https://airsdk.harman.com/download
https://github.com/airsdk/airsdkmanager-releases/releases


 

Public 6(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

tvOS tvOS SDK Version:  17.5 

tvSimulator SDK Version: 17.5 

XCode Version:   15.4 

Minimum tvOS Target:  12.0 

MacOS MacOS SDK Version:  14.5 

XCode Version:   15.4 

Minimum macOS Target: 10.13 

Windows Visual Studio Version:  14.0.25431.01 Update 3 

Linux GCC Version   5.4.0 (Ubuntu 16.04.1 – x86_64) 

    11.4.0 (Ubuntu 22.04.3 – arm64) 

2.3 AIR for Linux – Restrictions 

The AIR SDK now supports both x86_64 and arm64 based Linux platforms. These are only available 
to developers with a commercial license to the SDK, and have some restrictions: 

- No “shared runtime” support: applications would need to be built as ‘bundle’ packages with 
the captive runtimes 

- Packaging into native installers (“native” target type for .deb or .rpm files) is currently not 
working: please create a “bundle” target and use Linux tools to distribute these 

- No “StageWebView” component. 

 

2.4 AIR for Flex users 

HARMAN have continued Adobe’s strategy of issuing two AIR SDKs per platform: the first of these 
(“AIRSDK_[os].zip”) contains the newer ActionScript compiler and is a full, self-contained SDK for 
compiling and packaging AIR applications. The second of these is for combination with the Flex SDK 
(“AIRSDK_Flex_[os].zip”) which doesn’t include a number of the files necessary for 
ActionScript/MXML compilation. These SDKs should be extracted over the top of an existing, valid 
Flex SDK. 

The original instructions from Adobe are at https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-
air-sdk-flex-sdk.html but a few alterations to this are needed to Step 4 if running on macOS. For this 
platform, the downloaded AIR SDK zip needs to be expanded to a temporary area and then the copy 
command needs to copy symbolic links as links rather than resolving them to files. This can be done 
using a capital ’R’ rather than lowercase, hence: 

 
cp -Rf /tmp/AIRSDK_Flex_MacOS/* /path-to-empty-FLEXSDK-directory 

 

Please note that the config files (air-config.xml, airmobile-config.xml, flex-config.xml) may need to be 
updated to support new features and updates in AIR or in dependencies such as ANEs. For example 
to ensure the correct SWF version is output, the below line would need to be updated (e.g. to ‘50’ for 
AIR 50.x, or ‘44’ for AIR 33.1, etc): 
<swf-version>14</swf-version> 

 

https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-air-sdk-flex-sdk.html
https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-air-sdk-flex-sdk.html


 

Public 7(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

3 Summary of changes 
3.1 Runtime and namespace version 

Namespace:  51.1 

SWF version:  51 

The namespace and SWF version updates are made across all platforms and may be used to access 
the updated ActionScript APIs that have been introduced with AIR version 51.0. The namespace update 
is required for opening any SWF file that’s got a SWF version of 51, or when using any of the new XML 
application descriptor flags. 

 

3.2 Build Tools 

The Android build tools and platform used to create the AIR runtime files has been updated to 
Android-34 with the default target SDK now set to this level in the generated Android manifest files. 

Xcode 15.4 and the latest macOS and iphoneOS/tvOS SDKs are now being used to build the AIR 
SDK. Please note when the update was made to use Xcode 15.0, the minimum iOS/tvOS target 
version was increased to 12. Additional note: these are the versions that AIR itself is built with. The 
versions shown in IPA files are manually injected by ADT and don’t (yet) take the version codes from 
the local build environment. See Issue #3030 (github.com). 

The build system for this is on a version of macOS that doesn’t support 32-bit processes hence we 
cannot generate the 32-bit versions of the stub files. This means that we can no longer support older 
32-bit iPhone/iPad devices. 

 

3.3 AS3 APIs 

No changes. 

 

3.4 Features 

Reference: AIR-6196 

Title: Allowing ANEs for Android to have a single platform 

Applies to: Core build tools 

Description: When packaging an ANE for Android, if it just uses Java code, there is no 
longer a need to specify the different platforms for different CPU variants, i.e. 
Android-ARM64 etc. A single “Android” platform can now be used for Java-
based Android ANEs. 

 

Reference: AIR-6197 

https://github.com/airsdk/Adobe-Runtime-Support/issues/3030


 

Public 8(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

Title: Ability to use AAR files for Android ANEs 

Applies to: Core build tools 

Description: As well as using a JAR file, it’s now possible to use an AAR file for Android 
ANEs. This will be expanded and the classes plus resources will be 
packaged into the ANE for use by the application. 

 
Reference: AIR-6679 

Title: AIR app bundle creation to use architecture option 

Applies to: Core build tools 

Description: For macOS application bundle creations, the “-arch” option can be used in 
ADT to determine whether the output bundle contains “x64” (x86_64) 
binaries only, or “armv8” (arm64) binaries, or (if omitted, by default) the 
existing output which contains universal binaries (x86_64 and arm64). 

 

Reference: AIR-7069 

Title: AIR URL requests should include app-id in a custom header 

Applies to: All runtime components 

Description: When a URL request is made from AIR, a number of headers are included in 
the HTTP request; this change ads a new one “x-air-appid” which has a 
SHA-256 hash of the AIR’s Application ID. This is intended to help server 
code to ensure the correct application is accessing resources. 

 
Reference: AIR-7114 

Title: Ability to turn off rotation animations for AIR apps with 
'orientationAnimation' 

Applies to: Android and iOS runtime components, core build tools 



 

Public 9(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

Description: A new flag in the ‘initialWindow’ section of the application descriptor file can 
be used to turn off the animations that are seen when a user rotates a phone 
(assuming “autoOrients” is set to “true”). The default is “standard” i.e. the 
standard operating system animation will be applied. This value can be set to 
“none” which will mean the display switches immediately between landscape 
and portrait or vice versa. 

Note that the ‘size’ event listener should be used to detect the change in the 
display, as the ‘orientation’ change handlers pick up different sensors on 
some devices and may trigger independently of the display’s orientation. 

 
Reference: AIR-7121 

Title: Updating Android Gradle builds to AGP 8.4, minSdk 21, target 
34 

Applies to: Android runtime components 

Description: The build system has been updated so that that Android runtime classes and 
native libraries are built using an Android 34 platform with Android Gradle 
Plug-in version 8.4. The minimum SDK is now 21 across all CPU variants. 

 
Reference: AIR-7139 

Title: Updating icon/banner sizes for Android TV applications 

Applies to: Core build tools 

Description: Android TV applications require slightly larger icon sizes for the different 
resolution / DPI variants. This change adds support for the necessary image 
sizes in the application descriptor file, as well as introducing new 
‘bannerXXXxYYY’ variants for the banner images. ADT will now package the 
Android TV applications with appropriate files in the resource folders. 

 

Reference: AIR-7150 

Title: Android app descriptor elements for manifestPlaceholders 

Applies to: Core build tools 

Description: A new “manifestPlaceholders” element is available in the “android” section of 
the application descriptor file. This holds a list of “manifestPlaceholder” 
values that are used to set variables (for example, license keys or user/app 
specific settings) that could be required by third party libraries. 



 

Public 10(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

 
Reference: AIR-7157 

Title: AIR Android support for display cut-out modes 

Applies to: Android runtime components and core build tools 

Description: A new “displayCutoutMode” element is available in the “android” section of 
the application descriptor file. This is then used to provide the style for the 
application in how cut-outs are handled for full-screen applications. Values 
mirror those available on Android, default/always/never/shortEdges. 

See https://developer.android.com/develop/ui/views/layout/display-cutout#handle  

 

Reference: AIR-7299 

Title: Adding configuration settings for ELS to control fallback and 
key storage 

Applies to: All runtime components, core build tools 

Description: A new section in the application descriptor, called “encryptedLocalStorage”, 
can be used to specify how the user-specific key is stored (“storageMode”) 
and whether a fallback to older ELS mechanism is used (“fallbackMode”). 
These settings can be adjusted to prevent any possibility of operating system 
messages appearing asking for permissions or passwords.  

 
Reference: AIR-7303 

Title: Compiler to support '\u{nnnnnn}' format for Unicode chars 

Applies to: Core build tools 

Description: The compiler for AS3 has been updated to support a “{nnnnnn}” format 
following the \u Unicode delimiter, in addition to the \unnnn format. The value 
in the brackets are hexadecimal but can be any character code in the 
Unicode range i.e. not limited to 0xFFFF. If a value higher is used, it will be 
encoded as two UTF-16 code points within the string. 

 

Reference: AIR-7315 

Title: WebSocket to dispatch and respond to certificate errors 

Applies to: All runtime components 

https://developer.android.com/develop/ui/views/layout/display-cutout#handle


 

Public 11(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

Description: WebSocket clients use a SecureSocket internally, so this change hooks up 
the “certificateError” events that could be sent from that object, and passes it 
out from the WebSocket object. Event listeners can therefore call the 
‘preventDefault’ function to allow connections to proceed despite the SSL 
certificate issue. 

 

Reference: Github-461 https://github.com/airsdk/Adobe-Runtime-Support/issues/461 

Title: Adding ADT handling and updating platform conversion for 
cmdline bundle 

Applies to: Desktop runtime components, core build tools 

Description: Similar to a “bundle” target for ADT, a new “cmdline” option can be used to 
create command-line applications that have a captive AIR runtime, for the 
desktop operating systems. The applications that are then run will not 
generate a native window and cannot access any UI-related components. 
They can be quit either via a ctrl-c type command from the console/terminal, 
or within the application via NativeApplication.exit(). 

Note that there appears to be an issue with the macOS command-line 
application so this will be investigated and a fix provided shortly. 

 

Reference: Github-3297 https://github.com/airsdk/Adobe-Runtime-Support/issues/3297 

Title: Adding Android app descriptor settings for compileSdk and 
build tools folder 

Applies to: Core build tools 

Description: New application descriptor values within the “android” section allows for 
greater control over the build settings and environment used for Android 
APK/AAB creation. “androidCompileSdkVersion” is a number specifying the 
API level used for compilation; “androidBuildToolsVersion” is a version string 
specifying the build tools folder to use; note that the Android Gradle Plug-in 
behaviour changes in later versions such that this would be ignored and the 
latest available build tools always used. 

 

Reference: Github-3298 https://github.com/airsdk/Adobe-Runtime-Support/issues/3298 

Title: Adding support for iosSimulator in the ADT configuration file 

Applies to: Core build tools 

https://github.com/airsdk/Adobe-Runtime-Support/issues/461
https://github.com/airsdk/Adobe-Runtime-Support/issues/3297
https://github.com/airsdk/Adobe-Runtime-Support/issues/3298


 

Public 12(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

Description: A new item has been added to the build configuration file, “iosSimulator”, 
which can be set to one of the names of the available simulators that is 
available on the macOS device for installation and debugging an AIR app via 
the simulator. 

 

Reference: Github-3349 https://github.com/airsdk/Adobe-Runtime-Support/issues/3349 

Title: Adding '-compiler.float' option to turn off float support 

Applies to: Core build tools 

Description: A new compiler option has been provided to ensure that new SWFs can be 
generated that do not have the “float” support, hence remaining compatible 
with other tools that interpret the ABC format without expecting a ‘float’ table 
in the constant pool. 

 

Reference: Github-3371 https://github.com/airsdk/Adobe-Runtime-Support/issues/3371 

Title: Android WebView to allow file chooser dialogs in forms 

Applies to: Android runtime component 

Description: The WebView functionality has been updated to support the pass-through of 
file chooser requests, such that an HTML form can request a file or files 
which will result in the appropriate file picker dialog to be displayed by 
Android. Multiple files can be returned where this has been requested. 

 

3.5 Bug Fixes 

3.5.1 Release 51.1.1.1 

Reference: AIR-7142 

Title: Android OpenGL ES context is lost on device rotation 

Applies to: Android runtime component 

Description: When an Android device is rotated, the EGL context was being destroyed 
because of an issue with surface/size detection. However this appears to 
have been a historical issue, so the code has been updated so that it now 
attempts to retain the EGL context, meaning that all the GPU assets will be 
available following the display’s orientation switch. 

https://github.com/airsdk/Adobe-Runtime-Support/issues/3349
https://github.com/airsdk/Adobe-Runtime-Support/issues/3371


 

Public 13(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

 

Reference: AIR-7265 

Title: Enhanced ELS v2 file format with error checking 

Applies to: All runtime components 

Description: The format used to store ELS data has been updated so that it can include 
some error-checking for the decryption process. This will ensure that it can 
check that the correct application and user is accessing the file i.e. whether 
the decryption process actually created sensible results. 

 

Reference: Github-162 https://github.com/airsdk/Adobe-Runtime-Support/issues/162 

Title: Fixing rounding to ensure large scaled-down bitmaps display 
properly 

Applies to: All runtime components 

Description: An earlier fix had not completely fixed the issue where large but scaled-down 
bitmaps result in an arithmetic overflow with internal matrix operations in the 
AIR rendering code. This should complete the fix to allow this behaviour. 

 

Reference: Github-1494 https://github.com/airsdk/Adobe-Runtime-Support/issues/1494 

Title: Hooking up WebView permission requests to existing 
PermissionManager implementations 

Applies to: All runtime components 

Description: When an embedded browser engine used by a WebView control is 
requesting permissions from the end user, this is now being redirected into 
the AIR application logic to check whether the application already has those 
permissions. If so, the appropriate response is sent to the webview control; if 
not, the user is prompted to grant/deny the permissions via the current 
PermissionManager mechanisms. 

 

Reference: Github-3307 https://github.com/airsdk/Adobe-Runtime-Support/issues/3307 

Title: Ensuring Win32 webview loads an HTML-based AIR app via a FILE 
url 

Applies to: Windows runtime component 

https://github.com/airsdk/Adobe-Runtime-Support/issues/162
https://github.com/airsdk/Adobe-Runtime-Support/issues/1494
https://github.com/airsdk/Adobe-Runtime-Support/issues/3307


 

Public 14(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

Description: If a file path was used for loading a URL, on Windows with webview2 this 
had not been working due to some internal mechanisms for resolving paths. 
The fix means that URLs based on files or application URLs can now be 
used, rather than needing everything to be loaded via HTTP. 

 

Reference: Github-3310 https://github.com/airsdk/Adobe-Runtime-Support/issues/3310 

Title: Removing redundant WebKit/FP files from AIR SDK 

Applies to: Various runtime components 

Description: Some of the unnecessary/obsolete files have been removed from the SDK. 

 

Reference: Github-3334 https://github.com/airsdk/Adobe-Runtime-Support/issues/3334 

Title: Correcting debugline values for 'getlex' instructions 

Applies to: Core build tools 

Description: The compiler has been updated so that ‘getlex’ instructions are now included 
in the opcodes for which a ‘debugline’ value could be generated. This 
corrects some issues (typically during start-up/definition of classes) where an 
invalid debug line was shown. 

 

Reference: Github-3356 https://github.com/airsdk/Adobe-Runtime-Support/issues/3356 

Title: Fixing Array/Vector 'includes' method for strings created via 
parsing 

Applies to: All runtime components 

Description: An invalid object comparison type had meant that the ‘includes’ method for 
Arrays and Vector types was not working properly when used with strings 
that weren’t directly equivalent (i.e. the underlying string storage might have 
been different). This should fix the comparisons to make them more match 
the idea of “indexOf(var) != -1”  

 

Reference: Github-3357 https://github.com/airsdk/Adobe-Runtime-Support/issues/3357 

Title: Preventing iOS crash when starting up with Scout 

https://github.com/airsdk/Adobe-Runtime-Support/issues/3310
https://github.com/airsdk/Adobe-Runtime-Support/issues/3334
https://github.com/airsdk/Adobe-Runtime-Support/issues/3356
https://github.com/airsdk/Adobe-Runtime-Support/issues/3357


 

Public 15(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

Applies to: iOS runtime components 

Description: A recent update for native window handling had caused a problem when 
Adobe Scout was also present and configured to connect to a host computer 
during start-up. Additional defensive programming has been added to avoid 
the problem. 

 

Reference: Github-3360 https://github.com/airsdk/Adobe-Runtime-Support/issues/3360 

Title: Allowing file uploads from content URIs on Android 

Applies to: Android runtime component 

Description: Uploading a ‘File’ object to a web server using the FileReference API 
mechanisms was not working with ‘content’ URIs, i.e. files that have been 
selected from a file browser using the new Storage Access Framework. A 
number of changes have been added to enable this capability. 

 

Reference: Github-3370 https://github.com/airsdk/Adobe-Runtime-Support/issues/3370 

Title: Fixing Android ELS key being reset by AS3 call 

Applies to: Android runtime component 

Description: When ‘reset’ was called on Encrypted Local Storage, it was also removing 
the OS-specific storage used by the new ELS key store mechanism. The 
identifiers used for this have been updated to avoid this conflict. 

 

3.5.2 Release 51.1.1.2 

Reference: Github-461 https://github.com/airsdk/Adobe-Runtime-Support/issues/461 

Title: Fixing command-line entry framework detection for MacOS bundle 

Applies to: MacOS runtime component 

Description: The “cmdline” bundle creation on macOS was not correctly picking up the 
captive runtime, and had been falling back to rely on the installed (shared) 
runtime, which caused a versioning issues if different versions were used. 

The executable is now correctly looking first for the captive runtime 
framework in the same location as the executable. 

https://github.com/airsdk/Adobe-Runtime-Support/issues/3360
https://github.com/airsdk/Adobe-Runtime-Support/issues/3370
https://github.com/airsdk/Adobe-Runtime-Support/issues/461


 

Public 16(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

 
Reference: Github-3380 https://github.com/airsdk/Adobe-Runtime-Support/issues/3380 

Title: Fixing Android file seek/tell functionality 

Applies to: Android runtime component 

Description: A recent change to handle larger files on Android had caused problems 
when checking the file location or seeking within files that are also being 
read or written to. An initial change was made for files that were packaged in 
the APK file, as this was thought to be the cause of the problem, so these 
files are now being extracted and handled via Java/JNI calls. 

To complete the fix, the earlier code has been re-introduced, and where 
those functions fail (which should be in the case of the larger >2GB files) the 
newer code will be called. However it is not yet clear whether the new code 
actually does work properly in the case of large files; initial testing (for file 
writing) worked fine but complex cases may cause issues. 

 

Reference: Github-3390 https://github.com/airsdk/Adobe-Runtime-Support/issues/3390 

Title: Fixing MacOS App Bundle packaging with ANE files for universal 
binaries 

Applies to: Core build tools 

Description: The change to allow MacOS application bundles to have their architecture 
specified led to a problem when packaging an application that contains 
ANEs (unless packaging for just x86_64). This has been updated so that the 
ANE platforms are correctly handled for all macOS platforms. 

 

Reference: Github-3391 https://github.com/airsdk/Adobe-Runtime-Support/issues/3391 

Title: Ensuring calls to navigateToUrl and sendToUrl still work with 
new x-air-appid header 

Applies to: All runtime components 

Description: The change in 51.1.1.1 to add an “x-air-appid” header to all URL requests 
had the side-effect of causing an internal error if calling navigateToUrl or 
sendToUrl. This header has now been added to the list of permissible 
headers when using those API calls. 

 

https://github.com/airsdk/Adobe-Runtime-Support/issues/3380
https://github.com/airsdk/Adobe-Runtime-Support/issues/3390
https://github.com/airsdk/Adobe-Runtime-Support/issues/3391


 

Public 17(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

3.5.3 Release 51.1.1.3 

Reference: Github-3354 https://github.com/airsdk/Adobe-Runtime-Support/issues/3354 

Title: Ensuring Chinese fonts on iOS 18 can be used 

Applies to: iOS runtime component 

Description: When running an existing AIR application on iOS 18 beta, Chinese 
characters were appearing as blank/square boxes. This was because AIR 
was not recognising the fonts as valid, because in iOS 18 they no longer 
contain a ‘glyf’ or ‘CFF’ table for the shape information. The code logic has 
been updated to accept the new Apple-proprietary table, so that the fonts 
can be used and passed to CoreGraphics for the text rendering. 

 

Reference: Github-3374 https://github.com/airsdk/Adobe-Runtime-Support/issues/3374 

Title: Correcting the aapt binary for Linux x86_64 

Applies to: Linux runtime component 

Description: The wrong binary had been included in the Linux version of the AIR SDK, 
with a macOS variant used for the “aapt” tool. The Linux x86_64 versions of 
these tools are now provided. 

 

Reference: Github-3375 https://github.com/airsdk/Adobe-Runtime-Support/issues/3375 

Title: Ensuring Touch End events are sent on iOS apps running on 
macOS 

Applies to: iOS runtime component 

Description: When an iOS app is run on an Apple-silicon macOS machine, the touch 
event handling did not cope properly with a ‘right click’ (double-finger tap) 
and a code logic error then prevented further processing of ‘Touch End’ 
events. This has been corrected; plus, to help identify the scenario where an 
iOS app is running on a mac, the “Capabilities.manufacturer” string will be 
updated to “Adobe macOS” rather than “Adobe iOS”. 

 
Reference: Github-3402 https://github.com/airsdk/Adobe-Runtime-Support/issues/3402 

Title: Ensuring Android AppEntry debugger configuration is properly 
built into ADT 

https://github.com/airsdk/Adobe-Runtime-Support/issues/3354
https://github.com/airsdk/Adobe-Runtime-Support/issues/3374
https://github.com/airsdk/Adobe-Runtime-Support/issues/3375
https://github.com/airsdk/Adobe-Runtime-Support/issues/3402


 

Public 18(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

Applies to: Core build tools 

Description: A code tidy-up task had resulted in the ADT build process not generating the 
correct code for the “debugger” version of AppEntry. This meant that Android 
applications could not be remote-debugged, when using the previous 
release. The build task has been updated to match the new code so that this 
is now working. 

 
Reference: Github-3403 https://github.com/airsdk/Adobe-Runtime-Support/issues/3403 

Title: Ensuring ELS getItem works on new machine with no fallback 

Applies to: All runtime components 

Description: As part of the ELS updates in 51.1, it is possible to specify to not use the 
earlier ELS storage mechanism as a fallback. However, a logic error in the 
code had assumed that if an item was not found in a new store, we could 
query the old store; when the old store is not available, this had been treated 
as an internal error. The logic has been updated here so that a missing item 
is no longer causing the code to throw an internal error exception. 

 
Reference: Github-3404 https://github.com/airsdk/Adobe-Runtime-Support/issues/3404 

Title: Moving ELS files into app-storage folders 

Applies to: All runtime components 

Description: The new ELS updates resulted in all ELS files being stored within a single 
Adobe-specific location in device storage. However, this does not follow 
standard practice for application-specific files, hence these files are being 
moved back into the “app-storage” folder. 

 

 

https://github.com/airsdk/Adobe-Runtime-Support/issues/3403
https://github.com/airsdk/Adobe-Runtime-Support/issues/3404


 

Public 19(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

4 Configuration File 
ADT uses an optional configuration file to change some of its behaviour. To create a configuration file 
(there is not one by default within the SDK), create a new text file and save this with the name 
“adt.cfg” in the SDK’s “lib” folder (i.e. alongside the ‘adt.jar’ file). The configuration file is in the 
standard ‘ini file’ format with separate lines for each option, written as “setting=value”. Current options 
are listed below: 

Setting Explanation 

DefaultArch Used as a default architecture if there is no “-arch” 
parameter provided to ADT. 

Values may be ‘armv8’, ‘armv8’, ‘x86’ or ‘x64’. 

OverrideArch Used where an architecture value is being provided to ADT 
using the ‘-arch’ parameter, this configuration setting will 
override such parameter with the value given here. 

Values may be ‘armv8’, ‘armv8’, ‘x86’ or ‘x64’. 

DebugOut If set to “true”, results in additional output being generated 
into a local file which can aid in debugging problems within 
ADT (including the use of third party tools from the Android 
SDK). 

Values may be ‘true’ or ‘false’, default is ‘false’. 

UncompressedExtensions A comma-separated list of file extensions that should not 
be compressed when such files are found in the list of 
assets to be packaged into the APK file. 

For example: “UncompressedExtensions=jpg,wav” 

AddAirToAppID Configures whether or not the “air.” prefix is added to an 
application’s ID when it is packaged into the APK. 

Values may be ‘true’ or ‘false’, default is ‘true’. 

JavaXmx Adjusts the maximum heap size available to the Java 
processes used when packaging Android apps (dx/d8, and 
javac). 

Default value is 1024m although this is automatically 
overridden by any environment variable or value passed to 
the originating application. If this config setting is present, 
e.g. ‘2048m’, then it takes priority over all other 
mechanisms. 

CreateAndroidAppBundle Overrides any usage of ADT with an APK target type, and 
instead generates an Android App Bundle. Note that the 
output filename is not adjusted so this may result in 
generation of a file with “.apk” extension even though it 
contains an App Bundle. 

Values may be ‘true’ or ‘false’, default is ‘false’. 



 

Public 20(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

KeepAndroidStudioOutput When generating an Android App Bundle, rather than 
using a temporary folder structure and cleaning this up, 
this option will generate the Android Studio file structure 
under the current folder and will leave this in place). 

Values may be ‘true’ or ‘false’, default is ‘false’. 

AndroidPlatformSDK A path to the Android SDK, that can be used instead of the 
“-platformsdk” command line parameter. Note that on 
Windows, the path should contain either double-
backslashes (“c:\\folder”) or forwardslashes (“c:/folder”). 

iOSPlatformSDK A path to the iOS/iPhone/iPhoneSimulator SDK, that can 
be used instead of the “-platformsdk” command line 
parameter. 

JAVA_HOME This can be set as an override or alternative to the system 
environment variable that is read when ADT needs to use 
Java (e.g. when creating an Android App Bundle). Note 
that on Windows, the path should contain either double-
backslashes (“c:\\folder”) or forwardslashes (“c:/folder”). 

UseNativeCodesign On macOS, this will mean that the IPA binary is signed 
using the “codesign” process rather than using internal 
Java sun security classes within ADT. This is “false” by 
default, unless ADT detects that the sun security Java 
classes are not available. 

SignSwiftFiles By default, any swift libraries that are included in an IPA 
payload are signed in the normal way. This can be turned 
off by setting this value to “false”. 

OnlyIncludeSwiftUsedArchsInSupport If this is set to “true” then for ipa-app-store builds that 
include a “SwiftSupport” folder, the swift libraries will be 
updated via lipo to only include architectures that are used 
by the application (e.g. armv7 and arm64, omitting armv7s 
and arm64e). 

OnlyIncludeSwiftUsedArchsInPayload This is similar to the above flag but applies to the versions 
of the swift libraries that are included in the “Payload” 
folder within the IPA package. This (and the above) are 
now defaulting to “false” so that the swift libraries are just 
copied into position, but to get the legacy behaviour this 
should be set to “true”. 

iosSimulator The name of a simulator to use when installing or running 
an IPA file on an iPhone simulator on mac. Note that this 
value will be overridden by any command-line option or by 
an environment variable should this be set as well (i.e. 
AIR_IOS_SIMULATOR_DEVICE). 

 

 



 

Public 21(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

5 Android builds 
5.1 AAB Target 

Google introduced a new format for packaging up the necessary files and resources for an application 
intended for uploading to the Play Store, called the Android App Bundle. Information on this can be 
found at https://developer.android.com/guide/app-bundle 

AIR now supports the App Bundle by creating an Android Studio project folder structure and using 
Gradle to build this. It requires an Android SDK to be present and for the path to this to be passed in 
to ADT via the “-platformsdk” option (or set via a config file – it also checks in the default SDK 
download location). It also needs to have a JDK present and available, and will attempt to find this 
either from configuration files or via the JAVA_HOME environment variable (or if there is an Android 
Studio installation present in the default location, using the JDK provided by that). 

To generate an Android App Bundle file, the ADT syntax is similar to the “apk” usage: 

adt -package -target aab <signing options> output.aab <app descriptor and files> [-extdir 
<folder>] -platformsdk <path_to_android_sdk> 

No “-arch” option can be provided, as the tool will automatically include all of the architecture types. 
Signing options are optional for an App Bundle. 

Note that the creation of an Android App Bundle involves a few steps and can take significantly longer 
than creating an APK file. We recommend that APK generation is still used during development and 
testing, and the AAB output can be used when packaging up an application for upload to the Play 
Store. 

ADT allows an AAB file to be installed onto a handset using the “-installApp” command, which 
wraps up the necessary bundletool commands that generate an APKS file (that contains a set of APK 
files suitable for a particular device) and then installs it. If developers want to do this manually, 
instructions for this are available at https://developer.android.com/studio/command-
line/bundletool#deploy_with_bundletool, essentially the below lines can be used: 

java -jar bundletool.jar build-apks --bundle output.aab --output output.apks --connected-
device 

java -jar bundletool.jar install-apks --apks=output.apks 

Note that the APK generation here will use a default/debug keystore; additional command-line 
parameters can be used if the output APK needs to be signed with a particular certificate. 

5.2 Play Asset Delivery 

As part of an App Bundle, developers can create ”asset packs” that are delivered to devices 
separately from the main application, via the Play Store. For information on these, please refer to the 
below link: 

https://developer.android.com/guide/playcore/asset-delivery 

In order to create asset packs, the application XML file needs to be modified within the <android> 
section, to list the asset packs and their delivery mechanism, and to tell ADT which of the files/folders 
being packaged should be put into which asset pack. 

For example: 
<assetPacks> 

https://developer.android.com/guide/app-bundle
https://developer.android.com/studio/command-line/bundletool#deploy_with_bundletool
https://developer.android.com/studio/command-line/bundletool#deploy_with_bundletool
https://developer.android.com/guide/playcore/asset-delivery


 

Public 22(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

    <assetPack id="ImageAssetPack" delivery="on-demand" 
folder="AP_Images"/> 

</assetPacks> 

This instruction would mean that any file found in the ”AP_Images” folder would be redirected into an 
asset pack with a name ”ImageAssetPack”. The delivery mechanisms can be ”on-demand”, ”fast-
follow” or ”install-time” per the Android specifications. 

Note that assets should be placed directly into the asset pack folder as required, rather than adding 
an additional ”src/main/assets” folder structure that the Android documentation requires. This folder 
structure is created automatically by ADT during the creation of the Android App Bundle. 

The asset pack folder needs to be provided as a normal part of the command line for the files that 
should be included in a package. So for example if the asset pack folder was ”AP_Images” and this 
was located in the root folder of your project, the command line would be: 
adt -package -target aab MyBundle.aab application.xml MyApp.swf AP_Images 
[then other files, -platformsdk directive, etc] 

If there were a number of asset packs and all of the relevant folders were found under an 
”AssetPacks” folder in the root of the project, the command line would be: 
adt -package -target aab MyBundle.aab application.xml MyApp.swf -C 
AssetsPacks . [then other files, -platformsdk directive, etc] 

To access the asset packs via the Android Asset Pack Manager functionality, an ANE is available via 
the AIR Package Manager tool. See https://github.com/airsdk/ANE-PlayAssetDelivery/wiki 

 

5.3 Android Text Rendering 

Previously, the rendering of text on Android had been handled via a native library built into the C++-
based AIR runtime file. This had some restrictions and issues with handling fonts, which caused major 
problems with Android 12 when the font fallback mechanism was changed and the native code no 
longer coped with this. To resovle this, a new text rendering mechanism has been implemented that 
uses public Android APIs in order to set up the fonts and to render the text. 

The new mechanism uses JNI to communicate between the AIR runtime and the Android graphics 
classes for this, and has some differences with the legacy version. One of the changes that has been 
made is to correct the display of non-colorized text elements when rendering to bitmap data: in earlier 
builds, if some text included an emoji with a fixed color (e.g. ”flames” that are always yellow/orange 
even if you request a green font color) then these characters appeared blue, due to the different pixel 
formats used by Android vs the AIR BitmapData objects. With the new mechanism, AIR correctly 
renders these characters to BitmapData (although the problem still remains when rendering device 
text to a ’direct’ mode display list). 

Some developers may not want to switch to this new mechanism yet, and others may want their 
applications to always use it. Some would perhaps want it only when absolutely necessary i.e. from 
Android 12 onwards. To cope with this request, there is a new application descriptor setting that can 
be used: ”<newFontRenderingFromAPI>” which shoudl be placed within the <android> section of the 
descriptor XML. The property of this can be used to set the API version on which the new rendering 
mechanism takes place. The default value is API level 31 which corresponds to Android 12.0 (see 
https://source.android.com/setup/start/build-numbers). So for example if you always want devices to 
use the new mechanism, you can add: 

<newFontRenderingFromAPI>0</newFontRenderingFromAPI> 

whereas if you never want devices to use this, you could add: 
<newFontRenderingFromAPI>99999</newFontRenderingFromAPI> 

https://github.com/airsdk/ANE-PlayAssetDelivery/wiki
https://source.android.com/setup/start/build-numbers


 

Public 23(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

5.4 Android File System Access 

In the earlier versions of Android, it was possible to use the filesystem in a similar way to a Linux 
computer, but with a set of restrictions that had a fairly high-level granularity: 

- It was possible to read/write to an application’s private storage location. AIR exposes this via 
”File.applicationStorageDirectory”. 

- If the app requested the ’read/write storage’ permission, the app could then read and write in 
the user’s shared storage location and to removable storage. The main home folder was 
accessible via ”File.userDirectory” or ”File.documentsDirectory”, and later AIR 
33.1 added ”File.applicationRemovableStorageDirectory”.  

- Later, this was updated such that the user had to also grant permission via a system pop-up 
message. To trigger this pop-up, AIR developers could use ”File.requestPermission()” 

 

With the introduction of “scoped storage” however, a lot of this has changed. Android files are treated 
in a similar way to other resources, with URLs using the “content://” schema which can refer either to 
filesystem-backed files, or to transient resources, or elements within other storage mechanisms such 
as databases and libraries. Permission to access each resource depends upon the creator of that 
resource, and by default it’s not possible for an application to open a file that another application had 
created. Permissions for the top-level internal storage (i.e. “File.documentsDirectory”) have 
been changed so that applications cannot create entries here but must use sub-folders of these (a set 
of standard sub-folders is generally created by the OS). 

Within AIR, we have been attempting to add support for the “content://” URIs, and to switch the File 
class “browseForXXX” functions so that they use the new intent-based mechanisms for selecting 
files to open and save, or to select a folder. Within these calls, we are also requesting the appropriate 
read/write permissions (and persisting these so that they can be used in the future). This means that it 
should be possible to call “browseForOpen()” and allow the user to select a shared file that can 
then always be opened (for reading). Equally a “browseForDirectory()” call should mean that an 
application then has read/write access into the selected directory and its sub-tree. 

Requesting file system permissions has to be handled in a similar way, with permissions either 
granted for a file or for a folder tree. The “File.requestPermission()” function therefore looks at 
the native path of the File object this is called on, and decides whether to show a file open intent (if 
there’s a normal path or URL in the nativePath property), or to show a folder selection intent (if the 
path ends in a forward-slash), or whether to just ignore the call with a ‘granted’ response and then 
wait for later permission requests for individual files (if the File object has not had a nativePath set). 
This last option is intended to allow apps to work across different Android versions and is the 
recommended option: early in the application lifecycle, create a new File and call 
requestPermissions(): if the app is running on an earlier Android version, the permission pop-up 
will appear, otherwise the app will need to request specific file access later on via the 
“browseForXXX” functions or by requesting permission for a specific file. Sadly it isn’t possible to 
ensure that the user only gives a yes/no response for these file/folder open intents, they are able to 
browse for other files, so it may be that the file the user selects is not the one you are trying to open. If 
this is detected, the permission status event will show as ‘denied’, so if you are happy for the user to 
choose a different file, use “browseForOpen()” rather than “requestPermission()”. 

 

There is an exception to having to use scoped storage and the storage access framework, which is if 
an application has the “MANAGE_EXTERNAL_FILES” permission. This permission is intended for 
utilities such as file manager apps and anti-virus scanners that have a legitimate need to access all 
the (shared storage) files on the device, but if an app requests this permission and is submitted to the 
Play Store, but doesn’t justify itself, then the submission is likely to be rejected. 

Some applications are not distributed via the Play Store though, at which point this permission can be 
used to turn the behaviour back to how it used to be in earlier Android versions. The 



 

Public 24(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

“File.requestPermission()” capability has been overridden in the cases where AIR detects this 
permission has been requested in the manifest, and it will now display the appropriate dialog to ask 
the user to turn on the ‘all files’ access for this app. Once this has been granted (asynchronously), it 
would then be possible to create, read and write files and folders including in the root storage device. 

 
  



 

Public 25(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

6 Windows builds 
The SDK now includes support for Windows platforms, 32-bit and 64-bit. We recommend that 
developers use the “bundle” option to create an output folder that contains the target application. This 
needs to be packaged up using a third party installer mechanism, in order to provide something that 
can be easily distributed to and installed by end users. HARMAN are looking at adapting the previous 
AIR installer so that it would be possible for the AIR Developer Tool to perform this step, i.e. allowing 
developers to create installation MSI files for Windows apps in a single step. 

Instructions for creating bundle packages are at: 

https://help.adobe.com/en_US/air/build/WSfffb011ac560372f709e16db131e43659b9-8000.html 

Note that 64-bit applications can be created using the “-arch x64” command-line option, to be added 
following the “-target bundle” option. 

 

https://help.adobe.com/en_US/air/build/WSfffb011ac560372f709e16db131e43659b9-8000.html


 

Public 26(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

7 MacOS builds 
MacOS builds are provided only as 64-bit versions. A limited shared runtime option is being prepared 
so that existing AIR applications can be used on Catalina, but the expectation for new/updated 
applications is to also use the “bundle” option to distribute the runtime along with the application, as 
per the above Windows section. 

Note that Adobe’s AIR 32 SDK can be used on Catalina if the SDK is taken out of ‘quarantine’ status. 
For instructions please see an online guide such as: 

https://www.soccertutor.com/tacticsmanager/Resolve-Adobe-AIR-Error-on-MacOS-Catalina.pdf 

AIR SDK now supports MacOS Big Sur including on the new ARM-based M1 hardware: applications 
will be generated with ‘universal binaries’ and most of the SDK tools are now likewise built as 
universal apps. 

https://www.soccertutor.com/tacticsmanager/Resolve-Adobe-AIR-Error-on-MacOS-Catalina.pdf


 

Public 27(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

8 iOS support 
8.1 32-bit vs 64-bit 

For deployment of AIR apps on iOS devices, the AIR Developer Tool will use the provided tools to 
extract the ActionScript Byte Code from the SWF files, and compile this into machine code that is then 
linked with the AIR runtime and embedded into the IPA file. The process of ahead-of-time compilation 
depends upon a utility that has to run with the same processor address size as the target architecture: 
hence to generate a 32-bit output file, it needs to run a 32-bit compilation process. This causes a 
problem on MacOS Catalina where 32-bit binaries will not run. 

Additionally, due to the generation of stub files from the iPhone SDK that are used in the linking 
process – which are created in a similar, platform-specific way – it is not possible to create armv7-
based stub files when using Catalina or later. From release 33.1.1.620, the stub files are based on 
iOS15 and are purely 64-bit. This means that no 32-bit IPAs can be generated, even when running on 
older macOS versions or on Windows. 

 

8.2 MacOS remote linking from Windows 

Due to a number of updates from Apple around the mach-o linker, and the movement of symbols 
between different component libraries, it has become increasingly problematic to link Apple binaries 
on a Windows computer. Originally, Adobe had cross-compiled the “ld64” Apple linker, but without 
support for the “TBD” format that Apple use for the iPhoneOS/AppleTVOS SDKs. To work around this 
limitation, the AIR SDK includes “stub” binaries for the SDKs – but it is not then possible to support 
the movement of symbols i.e. where a particular symbol is found in different frameworks for different 
iOS versions. 

Using LLVM’s linker, which supports the mach-o format, it was also found that Apple restrictions had 
been preventing some applications from being published via the App Store due to a difference in how 
symbols were found/stored, and the known/unsupported issues in LLVM meant that this is also not a 
completely viable solution. 

The solution that we will work with now is to use a mac machine to perform the link stage of the build 
process. The rest of the development and build process can still occur on Windows but linking the AIR 
application’s object files against the iPhone / AppleTV SDKs should be done on a mac. 

There are two ways to achieve this: initially a manual mechanism to allow files to be pushed to a 
macOS machine, linked via a script, and then the result copied back to the Windows machine where 
the packaging command needs to be run again to pick up the binary. And with the release of 51.0.1 
this is now possible to handle automatically within a single run of ADT, following some initial machine 
configuration. Details on these two methods follow. 

8.2.1 Manual copying and linking 

There are a number of steps to the build process in this scenario. 

1. Configure ADT to use a specific folder, into which all linker inputs will be placed. 

To do this, edit the “adt.cfg” file (in your home folder under an “.airsdk” subfolder) and add a line: 
“IPALinkFolder=c:/path/to/link/folder”. This must be the name of an existing folder, under 
which subfolders will be created for each run of ADT. Note that you need to use forward-slashes, or 
escaped backslashes (“\\”), due to how Java reads in property files. 

2. Run your normal link command via ADT. 

This will then generate a subfolder under your “IPALinkFolder” location, which contains a script file 
and all the input files needed for the Apple linker. 



 

Public 28(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

3. Copy this link folder to your macOS computer. 

This can be done with SFTP/SCP or similar tools, or potentially you could have a network shared 
folder set up. 

4. On the macOS computer, run the linker. 

Using a terminal window, you will first need to set an environment variable, “AIR_SDK_HOME”, and 
then run the script that was generated by ADT. For example: 

 export AIR_SDK_HOME=/Users/username/Downloads/AIR_SDK/AIRSDK_51.0.1 

 ./linkerscript.sh 

5. Copy the resulting file back onto the Windows PC. 

The file should be called “linkerOutput” and should be an arm64 macho executable file. 

6. Call ADT again, this time providing the linked file. 

To do this, add the arguments “-use-linker-output path_to_linkerOutput”; this can go 
within the normal input files list, or at the end of this (similar to “-extdir”). 

ADT will then ignore the normal command to link the binary, and will use the provided executable in 
order to package and sign the IPA file. 

7. Clean up. 

The folder that’s created under the “IPALinkFolder” location, as well as the linkerOutput file (and of 
course the files that have been copied to the macOS machine) are not automatically deleted. So 
these should be periodically cleaned up manually to avoid wasting disk space. 

 

8.2.2 Programmatic remote linking 

In order to automatically allow the Windows machine to connect to the macOS machine and to copy 
files and drive the linker, a password-less mechanism will need to be set up to allow remote access 
without any user interaction. This requires the use of SSH keys: unless a key-pair is created that 
doesn’t have a passphrase, it will be necessary to use “ssh-agent” to store the passphrase and 
associate this with the user’s Windows credentials. 

To set this up (one time only): 

1. Create a new key-pair (unless you want to use an existing pair). 

On Windows, run “ssh-keygen” and provide a filename – the default is “id_rsa” but in this 
walkthrough we shall use “adt_access”. It then prompts for a passphrase: if you leave this blank, you 
will not need to follow the “ssh agent” steps below, but the recommendation would be to create a 
suitably secure passphrase for this. You should then have two files, “adt_access” and 
“adt_access.pub”. 

2. Install the public key on the mac machine. 

You can use sftp/scp for this. The key should be added into your “.ssh” folder – note that you need the 
username of the mac machine, which we shall assume is just “user”. You will then need to configure 
SSH to allow this public key to be used for connections: if you remote in (or just open a terminal) on 
the mac, go into the “.ssh” folder, and run: “cat adt_access.pub >> authorized_keys”. This 
adds the new key onto the end of the authorized keys list. 

3. Set up ssh agent to provide the passphrase. 

Firstly you will need to check that ssh-agent is running: open “Services” on the computer, and find an 
entry with name “OpenSSH Authentication Agent”. This should be changed to “Automatic”, or 
“Automatic (Delayed Start)” if you prefer, and if necessary, also started manually. The “Status” column 
should show that this is running. 



 

Public 29(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

Then in a Windows console, run “ssh-add adt_access” and provide your passphrase. 

Note that if you get an error message “Permissions for 'private-key.ppk' are too open”, you will need to 
ensure that only the current user is able to access the private key file (“adt_access”). This means 
adjusting the “Security” properties on this file, changing the owner of the file to the current local user 
account, removing inheritance and inherited permissions, and removing all permissions for 
users/groups other than the current local user. For more details, see the below link: 

Windows SSH: Permissions for 'private-key' are too open - Super User 

You can then test the connection by running “ssh -i adt_access user@mac_ip_address”, 
which should then log on automatically without further prompting. 

4. Provide the configuration to ADT. 

 Now that you have the connectivity set up, you need to create a configuration file for AIR. You will 
need to add two entries into the “adt.cfg” file that is in your “c:\users\username\.airsdk\” folder: 
IPALinkFolder=c:/path/to/link/folder 

RemoteLinkMachine=mac_ip_address 

The first setting is to provide a location into which the linker will output all of the files. This is not 
strictly necessary but will aid in debugging problems. 

The second provides the network location of the remote machine onto which you’ve put the public ssh 
key. 

You will then need to create a configuration file with the name of this “mac_ip_address” network 
address, with an “.cfg” extension, and put this into a subfolder “remote_link_configs” under the .airsdk 
directory. For example: 
C:\Users\username\.airsdk\remote_link_configs\192.168.1.3.cfg 

The contents of this file should be: 
CertPath=C:/path/to/private/key/adt_access 

Username=user 

SdkFolder=/Users/user/Documents/AIR_SDKs/AIRSDK_51.0.1 

The “CertPath” value points to the private key that we’ve named “adt_access”, again please note the 
use of forward-slashes or double-backslashes in the Windows path. “Username” is the user 
associated with the key from when this was added to “authorized_keys”. And “SdkFolder” is the path 
on the remote mac machine where an AIR SDK can be found. This path is only used for the runtime 
libraries i.e. “libRuntimeHMAOT.arm-air.a” and “builtin_abc.arm64-air.o”, the linker won’t use this for 
the actual link binary (ld64) or the stub files; instead, the remote script picks up your iPhoneOS SDK 
using the “xcrun” utility. 

 

Once that is all set up, you can use ADT as normal for IPA builds, and the remote linking will happen 
in the background. If there are issues, please check the adt.log (or use AIR SDK Manager’s 
“Troubleshooting” tab) and report an issue via Github. 

Please do note that the link folders are not (currently) cleaned up with this approach, so the location 
under the “IPALinkFolder”, and its copy that is pushed to the remote Mac device (with the same 
name, within the user’s home folder) will still exist after the ADT process has completed. This will help 
with debugging any issues, but we expect to change this in the future. 

 

 

https://superuser.com/questions/1296024/windows-ssh-permissions-for-private-key-are-too-open


 

Public 30(30) 
ADOBE AIR SDK RELEASE NOTES Version 51.1.1.3 

 

 
Copyright © 2024 HARMAN Connected Services 
All rights reserved. 

Document Id: HCS19-000287  

 

9 Splash Screens 
For our ‘free tier’ users, a splash screen is injected into the start-up of the AIR process, displaying the 
HARMAN and AIR logos for around 2 seconds whilst the start-up continues in the background. There 
are different mechanisms used for this on different platforms, the current systems are described 
below. 

9.1 Desktop (Windows/macOS) 

Splash screens are displayed in a separate window centred on the main display, while the start-up 
continues behind these. The processing of ActionScript is delayed until after the splash screen has 
been removed. 

9.2 Android 

The splash screen is displayed during start-up and happens immediately the runtime library has been 
loaded. After a slight delay the initial SWF file is loaded in and when processing for this starts, the 
splash screen is removed. 

9.3 iOS 

The splash screen is implemented as a launch storyboard with the binary storyboard and related 
assets included in the SDK. This has implications for those who are providing their own storyboards or 
images in an Assets.car file: 

- If you are on the ‘free tier’ then the AIR developer tool will ignore any launch storyboard you 
have specified within your application descriptor file, or provided within the file set for 
packaging into the IPA file. 

- If you are creating an Assets.car file, then you need to add in the AIR splash images from the 
SDK which are in the “lib/aot/res” folder. These should be copied and pasted into your 
“.xcassets” folder in the Xcode project that you are using for creation of your assets. 

Troubleshooting: 

Message from ADT: “Warning: free tier version of AIR SDK will use the HARMAN launch 
storyboard” – this will be displayed if a <UILaunchStoryboardName> tag has been added via the 
AIR application descriptor file. The tag will be ignored and the Storyboard from the SDK will be used 
instead. 

Message from ADT: “Warning: removing user-included storyboard "[name]"” will be displayed 
if there was a Storyboardc file that had been included in the list of files to package: this will be 
removed. 

Message from ADT: "Warning: free tier version of AIR SDK must use the HARMAN launch 
storyboard" – this will be displayed if the Storyboardc file in the SDK has been replaced by a user-
generated one. 

If a white screen is shown during start-up: check that the HARMAN splash images are included in 
your assets.car file. Note that the runtime may shut down if it doesn’t detect the appropriate splash 
images. 

The runtime may also shut down for customers with a commercial license if a storyboard has been 
specified within the AIR descriptor file but not added via the list of files to package into the IPA file. 

 


	1 Release Overview
	1.1 Key changes
	1.2 Deployment
	1.3 Limitations
	1.4 Feedback
	1.5 Notes

	2 Release Information
	2.1 Delivery Method
	2.2 The Content of the Release
	2.2.1 Detailed SW Content of the Release
	2.2.2 Delivered Documentation
	2.2.3 Build Environment

	2.3 AIR for Linux – Restrictions
	2.4 AIR for Flex users

	3 Summary of changes
	3.1 Runtime and namespace version
	3.2 Build Tools
	3.3 AS3 APIs
	3.4 Features
	3.5 Bug Fixes
	3.5.1 Release 51.1.1.1
	3.5.2 Release 51.1.1.2
	3.5.3 Release 51.1.1.3


	4 Configuration File
	5 Android builds
	5.1 AAB Target
	5.2 Play Asset Delivery
	5.3 Android Text Rendering
	5.4 Android File System Access

	6 Windows builds
	7 MacOS builds
	8 iOS support
	8.1 32-bit vs 64-bit
	8.2 MacOS remote linking from Windows
	8.2.1 Manual copying and linking
	8.2.2 Programmatic remote linking


	9 Splash Screens
	9.1 Desktop (Windows/macOS)
	9.2 Android
	9.3 iOS


