

Public 1(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Adobe AIR SDK Release Notes

Version 51.1.2.2
Date 6 November 2024
Document ID HCS19-000287
Owner Andrew Frost

Public 2(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Table of contents
1 Release Overview ... 3
1.1 Key changes ... 3
1.2 Deployment .. 3
1.3 Limitations .. 3
1.4 Feedback .. 4
1.5 Notes .. 4

2 Release Information ... 5
2.1 Delivery Method .. 5
2.2 The Content of the Release ... 5
2.3 AIR for Linux – Restrictions .. 6
2.4 AIR for Flex users ... 6

3 Summary of changes ... 7
3.1 Runtime and namespace version ... 7
3.2 Build Tools .. 7
3.3 AS3 APIs .. 7
3.4 Features ... 7
3.5 Bug Fixes .. 9

4 Configuration File ... 16

5 Android builds .. 18
5.1 AAB Target ... 18
5.2 Play Asset Delivery ... 18
5.3 Android Text Rendering ... 19
5.4 Android File System Access ... 20

6 Windows builds .. 22

7 MacOS builds .. 23

8 iOS support ... 24
8.1 32-bit vs 64-bit .. 24
8.2 MacOS remote linking from Windows .. 24

9 Splash Screens ... 27
9.1 Desktop (Windows/macOS) ... 27
9.2 Android ... 27
9.3 iOS .. 27

Public 3(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

1 Release Overview
Release 51.1.2.1 is a new feature release of the AIR 51.1 version, with the required updates for iOS
18 and a number of other minor feature improvements. No changes have been made to the
ActionScript APIs or versioning, or the XML descriptor file format, so the SWF version for this
continues to be 51 and the namespace continues at “51.1”.

Release 51.1.2.2 is a bug fix release that contains a number of fixes and updates across all of the
operating systems. Updates for release 51.1.2.2 are displayed in a dark red font.

1.1 Key changes

The build environment has been updated for for the macOS/iOS platforms, with the latest Apple SDKs
and build tools being used for these. This also means the ‘stub’ files include the new iOS/tvOS library
files so that applications/ANEs could access these APIs, although our recommendation is to develop
these applications on macOS where we can use the Apple linker and the official SDKs.

Two key changes to the iOS builds are to fix a problem in the AOT compiler with numerical operations
that can happen when a ‘float’ type is also used; and to ensure that Basic Authentication is working
properly when used in conjunction with self-signed certificates in HTTPS connections.

A number of updates have been provided on Android, with some focus on stability where applications
are set up to use the runtime in the ‘background’ thread.

Further changes are made to ADT to remove some of the confusing warning messages (which are
instead only output to the log file/troubleshooting connection), introducing the ability to generate a
universal APK file from an AAB bundle, and to be able to code-sign using “provider” class and
argument values, to match the jarsigner behaviour and support hardware tokens.

Bug fixes for 51.1.2.2 can be found in section 3.5.2.

1.2 Deployment

To obtain the release, it is recommended that developers install the AIR SDK Manager. Whilst the
monolithic zip files will still be available from the https://airsdk.harman.com website, this may be
updated less frequently in the future with only major releases. The goal is for the AIR SDK Manager to
help us publish minor updates/fixes with a quicker cadence without resulting in a large amount of
effort and data downloads.

The AIR SDK Manager is now available from the https://airsdk.dev website, as part of the “getting
started” instructions, or directly from github at: https://github.com/airsdk/airsdkmanager-releases

1.3 Limitations

For macOS users on 10.15+, the SDK may not work properly unless the quarantine setting is
removed from the SDK: $ xattr -d -r com.apple.quarantine /path/to/SDK

Please note that there is no longer support for 32-bit IPA files, all IPAs will use just 64-bit binaries now
so older iPhones/iPads may not be supported.

Android development should now be performed with an installation of Android Studio and the SDK
and build tools, so that the new build mechanism (using Gradle and the Android Gradle Plug-in) can
use the same set-up as Android Studio.

https://airsdk.harman.com/
https://airsdk.dev/
https://github.com/airsdk/airsdkmanager-releases

Public 4(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Linux runtimes are built using Ubuntu 16 for x86_64 variants in order to provide maximum
compatibility; however for arm64, the build environment uses Ubuntu 22 which then restricts usage to
similar versions of Linux (i.e. that have glibc version 2.34 or later).

1.4 Feedback

Any issues found with the SDK should be reported to adobe.support@harman.com or preferably
raised on https://github.com/airsdk/Adobe-Runtime-Support/issues.

The website for AIR SDK is available at: https://airsdk.harman.com with the developer portal available
under https://airsdk.dev

1.5 Notes

Contributors to the https://airsdk.dev website would be very welcomed: this portal is being built up as
the repository of knowledge for AIR and will be taking over from Adobe’s developer websites

The AS3 documentation for AIR is updated and now also available under this site:
https://airsdk.dev/reference/actionscript/3.0/

We will continue to provide the shared AIR runtime for Windows/macOS; however, this is not a
recommended deployment mechanism, it is prefereably to create native installers based on the
”bundle” deployments.

On MacOS in particular, the use of the shared AIR runtime to ‘install’ a .air file will not create a signed
application, hence new MacOS versions may block these from running. To ensure a properly signed
MacOS application is created, the “bundle” option should be used with native code-signing options
(i.e. those appearing after the “-target bundle” option) having a KeychainStore type with the alias
being the full certificate name.

mailto:adobe.support@harman.com
https://github.com/airsdk/Adobe-Runtime-Support/issues
https://airsdk.harman.com/
https://airsdk.dev/
https://airsdk.dev/
https://airsdk.dev/reference/actionscript/3.0/

Public 5(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

2 Release Information
2.1 Delivery Method

This release shall be delivered via the AIR SDK website: https://airsdk.harman.com/download

The update will also be available via the AIR SDK Manager. The latest version of this can be
downloaded from https://github.com/airsdk/airsdkmanager-releases/releases.

2.2 The Content of the Release

2.2.1 Detailed SW Content of the Release

Component Name 51.1.2.1 51.1.2.2
Core Tools 3.3.0 3.3.1

AIR Tools 3.1.0

Windows platform package 3.3.0 3.3.1

MacOS platform package 3.3.0 3.3.1

Linux platform package 3.3.0 3.3.1

Android platform package 3.3.0 3.3.1

iPhone platform package 3.3.0 3.3.1

2.2.2 Delivered Documentation

Title Document Number Version

Adobe AIR SDK Release Notes HCS19-000287 51.1.2

2.2.3 Build Environment

Platform Build Details

Android Target SDK Version: 34

Minimum SDK Version: 21

Platform Tools: 28.0.3

Build Tools: 34.0.0

SDK Platform: Android-34

Note – these are the versions we use to build the AIR SDK and runtime,
we also recommend developers match the same ‘target SDK’ version as
here.

iOS iPhoneOS SDK Version: 18.1

iPhoneSimulator SDK Version: 18.1

XCode Version: 16.1

Minimum iOS Target: 12.0

https://airsdk.harman.com/download
https://github.com/airsdk/airsdkmanager-releases/releases

Public 6(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

tvOS tvOS SDK Version: 18.1

tvSimulator SDK Version: 18.1

XCode Version: 16.1

Minimum tvOS Target: 12.0

MacOS MacOS SDK Version: 15.1

XCode Version: 16.1

Minimum macOS Target: 10.13

Windows Visual Studio Version: 14.0.25431.01 Update 3

Linux GCC Version 5.4.0 (Ubuntu 16.04.1 – x86_64)

 11.4.0 (Ubuntu 22.04.3 – arm64)

2.3 AIR for Linux – Restrictions

The AIR SDK now supports both x86_64 and arm64 based Linux platforms. These are only available
to developers with a commercial license to the SDK, and have some restrictions:

- No “shared runtime” support: applications would need to be built as ‘bundle’ packages with
the captive runtimes

- Packaging into native installers (“native” target type for .deb or .rpm files) is currently not
working: please create a “bundle” target and use Linux tools to distribute these

- No “StageWebView” component.

2.4 AIR for Flex users

HARMAN have continued Adobe’s strategy of issuing two AIR SDKs per platform: the first of these
(“AIRSDK_[os].zip”) contains the newer ActionScript compiler and is a full, self-contained SDK for
compiling and packaging AIR applications. The second of these is for combination with the Flex SDK
(“AIRSDK_Flex_[os].zip”) which doesn’t include a number of the files necessary for
ActionScript/MXML compilation. These SDKs should be extracted over the top of an existing, valid
Flex SDK.

The original instructions from Adobe are at https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-
air-sdk-flex-sdk.html but a few alterations to this are needed to Step 4 if running on macOS. For this
platform, the downloaded AIR SDK zip needs to be expanded to a temporary area and then the copy
command needs to copy symbolic links as links rather than resolving them to files. This can be done
using a capital ’R’ rather than lowercase, hence:

cp -Rf /tmp/AIRSDK_Flex_MacOS/* /path-to-empty-FLEXSDK-directory

Please note that the config files (air-config.xml, airmobile-config.xml, flex-config.xml) may need to be
updated to support new features and updates in AIR or in dependencies such as ANEs. For example
to ensure the correct SWF version is output, the below line would need to be updated (e.g. to ‘50’ for
AIR 50.x, or ‘44’ for AIR 33.1, etc):
<swf-version>14</swf-version>

https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-air-sdk-flex-sdk.html
https://helpx.adobe.com/uk/x-productkb/multi/how-overlay-air-sdk-flex-sdk.html

Public 7(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

3 Summary of changes
3.1 Runtime and namespace version

Namespace: 51.1

SWF version: 51

The namespace and SWF version updates are made across all platforms and may be used to access
the updated ActionScript APIs that have been introduced with AIR version 51.0. The namespace update
is required for opening any SWF file that’s got a SWF version of 51, or when using any of the new XML
application descriptor flags.

3.2 Build Tools

The Android build tools and platform used to create the AIR runtime files has been updated to
Android-34 with the default target SDK now set to this level in the generated Android manifest files.

Xcode 16.1 and the latest macOS and iphoneOS/tvOS SDKs are now being used to build the AIR
SDK. Please note when the update was made to use Xcode 15.0, the minimum iOS/tvOS target
version was increased to 12. Additional note: these are the versions that AIR itself is built with. The
versions shown in IPA files are manually injected by ADT and don’t (yet) take the version codes from
the local build environment. See Issue #3030 (github.com).

The build system for this is on a version of macOS that doesn’t support 32-bit processes hence we
cannot generate the 32-bit versions of the stub files. This means that we can no longer support older
32-bit iPhone/iPad devices.

3.3 AS3 APIs

No changes.

3.4 Features

Reference: AIR-7350

Title: ADT to create an APK file from an AAB file

Applies to: Core build tools

Description: To make it easier to generate an APK from an Android Application Bundle,
this utility option has been provided in ADT. The command line should use
the “-target apk” option along with an AAB file as the input (rather than
providing an application descriptor and fileset).

Reference: AIR-7351

https://github.com/airsdk/Adobe-Runtime-Support/issues/3030

Public 8(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Title: Updating ADT to allow signing using provider class and config
file args

Applies to: Core build tools

Description: For some hardware-based signing tokens where .p12 files cannot be
created, it may be necessary to set up a different approach for signing AIR
files. As well as the existing “-providerName” mechanism in the ADT signing
options, we have now added the ability to use “-providerClass” and “-
providerArg” options, to match how the Java jarsigner application works.

Note that you must be running ADT in at least Java 11 runtime in order to
make use of this feature.

See for example this DigiCert article.

Reference: AIR-7369

Title: Updating build files and settings for MacOS/iOS/tvOS SDK with
latest platforms and Xcode version

Applies to: MacOS and iOS runtime components

Description: These changes were to ensure that the AIR runtimes built correctly with
Xcode 16.0 using the latest iPhoneOS/AppleTVOS/MacOS SDKs.

Note that IPA files generated by ADT will currently still show the previous
settings i.e. apps will appear to Apple to have been built with Xcode 15.

Reference: AIR-7379

Title: Removing unnecessary NOTE outputs from ADT

Applies to: Core build tools

Description: A number of ‘note’ outputs were present in ADT e.g. around the Android
platform where the tools adjust the build settings based on target versions
and installed Android tools/SDKs. These had been causing confusion due to
Animate displaying these as if they were errors or warnings. The notes have
now been redirected into the log file and/or troubleshooting tools.

Reference: AIR-7395

https://knowledge.digicert.com/tutorials/sign-java-jar-files-with-a-hardware-token-based-code-signing-certificate-in-windows

Public 9(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Title: ADT properties file should cope with single-backslash in
Windows paths

Applies to: Core build tools

Description: The “adt.cfg” is read by ADT as a Java Properties file, and this meant that
any property containing a Windows-style path (i.e. single back-slash
characters as folder delimiters) would be read incorrectly, and then ignored.

Code has been added to pre-parse the file and if any such characters are
found – within an entry that is actually an existing Windows path – the file is
re-written with these as escaped back-slash characters (“\\”). A warning note
will be displayed when this has been done (which should only be needed
once as the file is then updated).

Reference: Github-3487 https://github.com/airsdk/Adobe-Runtime-Support/issues/3487

Title: Use banner320x180 instead of banner for Android manifest

Applies to: Core build tools

Description: Currently for Android TV, there is a requirement to use a “banner” value in
the Android manifest. However, with the addition in AIR 51.1 of a set of size-
specific banner fields, this requirement has been dropped as long as there is
a “banner320x180” field. I.e. there needs to be at least one of these values
present; if both are present, “banner” takes priority.

3.5 Bug Fixes

3.5.1 Release 51.1.2.1

Reference: AIR-7390

Title: Basic Authentication not working on iOS

Applies to: iOS runtime component

Description: When a server requested basic authentication in an iPhone/iPad app, this
should have picked up the authentication credentials specified via the
URLRequestDefaults.setLoginCredentialsForHost() method.
This seemed to fail – particularly when the server was also using a self-
signed certificate; an additional check has been added to ensure that any
provided credentials are passed in to the iOS subsystem.

https://github.com/airsdk/Adobe-Runtime-Support/issues/3487

Public 10(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: AIR-7391

Title: Android gesture events are not dispatched in the correct
background thread

Applies to: Android runtime components

Description: Some ANRs had been reported that showed gesture-based events, including
a double-tap, could cause deadlock within the AIR runtime if it was
configured to run in a background thread. These events are now being sent
in asynchronously where required, to avoid this issue.

Reference: AIR-7394

Title: Adjusting Android background thread for surface changed events

Applies to: Android runtime components

Description: A similar issue to AIR-7391, this problem was caused when a ‘surface
changed’ event is received from the Android subsystem when the AIR
runtime is configured to run in a background thread. The necessary
messages are again now being sent in asynchronously.

There is a side-effect here which means that the runtime will not be able to
block an orientation change, due to the asynchronous requirement of the
events. This means AIR applications that run in a background thread will
never receive an “orientationChanging” event, and will just receive the
“orientationChange” event.

Reference: Github-78 https://github.com/airsdk/Adobe-Runtime-Support/issues/78

Title: Ensuring italic text is not cut off when rendering direct mode
on Windows

Applies to: Windows runtime components

Description: An earlier fix for this had missed the clipping rectangle that is used on
Windows for ‘direct’ mode (rendering text via textures); this has been fixed
so that the appropriate bounding rectangle is used for italic text.

Reference: Github-3394 https://github.com/airsdk/Adobe-Runtime-Support/issues/3394

Title: Correcting AOT output for unplus (float support)

https://github.com/airsdk/Adobe-Runtime-Support/issues/78
https://github.com/airsdk/Adobe-Runtime-Support/issues/3394

Public 11(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Applies to: iOS runtime components

Description: The AOT compiler for iPhone/iPad applications had some instructions
missing from the code generation, which in some scenarios could lead to
incorrect values being set into variables (depending on the type of variable
and preceding instructions). These have now been added to correct the
operation of the AOT-compiled applications.

Reference: Github-3446 https://github.com/airsdk/Adobe-Runtime-Support/issues/3446

Title: Fixing Android StageWebView dropdown caused by spurious window
focus event

Applies to: Android runtime component

Description: The window focus changes added recently to allow NativeWindow activate
and deactivate events was causing a problem for StageWebView instances,
where the AIR application received a window focus loss event due to a pop-
up from the WebView component. The handling has been updated, similar to
a recent change for StageText pop-ups, so that the deactivate events are
only sent if focus has been completely lost from both the AIR stage layer as
well as the StageText and StageWebView layers.

Reference: Github-3492 https://github.com/airsdk/Adobe-Runtime-Support/issues/3492

Title: Prevent continuous FDB output on XML Loader error

Applies to: All runtime components

Description: When an unsupported XML file (for example an SVG file) was being loaded
by an AIR app, the load event was being notified to the Flash Debugger
which then continued to ask for details about the file even after the runtime
had sent an error event to the Loader object. The runtime code has been
updated to not send the load notification to the debugger if the parser was in
an error state.

3.5.2 Release 51.1.2.2

Reference: AIR-7364

Title: ADT to abort if a malformed ABC block is found during IPA
creation

Applies to: Core build tools

https://github.com/airsdk/Adobe-Runtime-Support/issues/3446
https://github.com/airsdk/Adobe-Runtime-Support/issues/3492

Public 12(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Description: During the creation of an IPA file, the ActionScript Byte Code blocks within
SWFs are extracted and then compiled using the ‘compile-abc-64’ tool. But if
a corrupted block is found, this can crash the compile tool, resulting in an
error that is very hard to find the cause of. With this update, ADT now
validates that the ABC blocks that are being extracted have an appropriate
header/version code, if not an error is thrown with details of the problematic
SWF file.

Reference: AIR-7402

Title: Crashes reported in Android runtime - strstr and JNI
exceptions

Applies to: Android runtime component

Description: Some crash reports had been provided that showed some errors where
‘strstr’ had been called with a null pointer, and crashes within the default
exception reporting. Some changes have been implemented to ensure we
validate the inputs to the relevant string functions, and to change how JNI
exceptions are handled and displayed.

Reference: AIR-7437

Title: Ensuring trace() output works in command-line apps

Applies to: Desktop runtime components

Description: When using a command-line app, the ‘trace()’ method had not been output
onto the console when using ADL, and were not sent to Scout. This has
been fixed so that trace strings are now reported in the normal way.

Reference: AIR-7441

Title: Fixing iPhone build target and eliminating duplicate symbols

Applies to: iOS runtime component

Description: The IPA linker output showed an issue where some iOS files were not built
with the correct build target resulting in a linker warning; and a duplicate
symbol had been left in some encryption-related code. The build settings are
now fixed, and the encryption code made common to eliminate these
warnings.

Public 13(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: Github-78 https://github.com/airsdk/Adobe-Runtime-Support/issues/78

Title: Correcting adjustment for italic text in Windows direct mode

Applies to: Windows runtime component

Description: The earlier fix in 51.1.2.1 caused an adjustment in the text layouts when text
was being selected (in ‘direct’ mode on Windows), resulting in gapping at the
end of a selection area if the font was italic. The additional spacings needed
to display the full italic text have now been updated to ensure selection area
behaviour does not change, but the final part of the text should still be fully
displayed (within an italic, auto-sized text field).

Reference: Github-1453 https://github.com/airsdk/Adobe-Runtime-Support/issues/1453

Title: Fixing certificateError behaviour on Linux and for Loader

Applies to: All runtime components

Description: The dispatching of ‘certificateError’ events had been missed out on the Linux
runtimes, and when a ‘Loader’ AS3 object was being used. These omissions
have been corrected. Note that further updates will still be required to ensure
‘certificateError’ can be dispatched from other objects e.g. StageWebView.

Reference: Github-2088 https://github.com/airsdk/Adobe-Runtime-Support/issues/2088

Title: Updating AIR mac app bundle signing to remove entitlements
from libraries

Applies to: MacOS runtime component and Core build tools

Description: The AIR runtime framework within the AIR SDK had been signed using
entitlements, which caused problems when this was then used when
packaging up an application bundle. Frameworks should not have
entitlements and this caused gatekeeper to prevent the framework from
loading. The SDK files have now been fixed, and the code-signing
functionality within ADT has been updated to ensure that entitlements are
only added to the application executables.

Reference: Github-2610 https://github.com/airsdk/Adobe-Runtime-Support/issues/2610

Title: TimeZone.getTimeZone(null) returns null

https://github.com/airsdk/Adobe-Runtime-Support/issues/78
https://github.com/airsdk/Adobe-Runtime-Support/issues/1453
https://github.com/airsdk/Adobe-Runtime-Support/issues/2088
https://github.com/airsdk/Adobe-Runtime-Support/issues/2610

Public 14(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Applies to: Windows runtime component

Description: If the application requested the default (null) TimeZone object, whilst the
computer locale was in a setting where daylight savings were not used, then
a null result was being returned. This was due to a mis-interpretation of the
Windows function return values; this is now fixed to ensure a time zone with
no daylight saving will be populated correctly.

Reference: Github-3516 https://github.com/airsdk/Adobe-Runtime-Support/issues/3516

Title: Android stability fixes for reported crashes

Applies to: Android runtime component

Description: Further crash reports were received from Android devices that appeared to
show garbage collection related issues with input device settings that were
called after clean-up. The implementation has been updated to be more
robust in detecting when the objects have been invalidated, to prevent any
access of this memory.

Reference: Github-3521 https://github.com/airsdk/Adobe-Runtime-Support/issues/3521

Title: Partial fix for problems with Chinese font in iOS 18

Applies to: iOS runtime component

Description: An issue in iOS 18.0.1 (and later) resulted in some display issues with
Chinese fonts, following the application going to/from the background mode.
This change updates the function being used to render the glyphs, to avoid
using a deprecated method. It appears to have solved the issue for some
use cases, but not all, so further work is ongoing here.

Reference: Github-3534 https://github.com/airsdk/Adobe-Runtime-Support/issues/3534

Title: Removing hard dependency on libsecret in AIR Linux runtime

Applies to: Linux runtime component

Description: The updated ELS implementation on Linux uses “libsecret”, but if this library
is not available (such as on SteamDeck devices) this prevents AIR from
loading. The implementation has been switched to use dynamic loading of
the library, with fallback to an alternative file-system permission-based
mechanism where libsecret is not available.

https://github.com/airsdk/Adobe-Runtime-Support/issues/3516
https://github.com/airsdk/Adobe-Runtime-Support/issues/3521
https://github.com/airsdk/Adobe-Runtime-Support/issues/3534

Public 15(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Reference: Github-3542 https://github.com/airsdk/Adobe-Runtime-Support/issues/3542

Title: Ensuring ADT does not package up .DS_Store files

Applies to: Core build tools

Description: When creating a package with ADT, on macOS it ignored any hidden files
such as “.DS_Store”, but on Windows these files had been included in the
package, resulting then in a failure of the code signature and runtime. The
ADT implementation has been updated to explicitly ignore these files and to
avoid packaging them in any ANE or IPA file.

Reference: Github-3552 https://github.com/airsdk/Adobe-Runtime-Support/issues/3552

Title: Ensuring activate events are not sent when minimising an app
in Windows

Applies to: Windows runtime component

Description: If an application was minimised by clicking on its icon in the Windows task
bar, the application received both a “deactivate” event and an “activate”
event immediately after this, with no events sent when the application was
then restored. This was caused by a mis-interpretation of the Windows
events, which are now filtered to ensure the “activate” is ignored if it’s not
informing about the AIR application’s activation.

https://github.com/airsdk/Adobe-Runtime-Support/issues/3542
https://github.com/airsdk/Adobe-Runtime-Support/issues/3552

Public 16(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

4 Configuration File
ADT uses an optional configuration file to change some of its behaviour. To create a configuration file
(there is not one by default within the SDK), create a new text file and save this with the name
“adt.cfg” in the SDK’s “lib” folder (i.e. alongside the ‘adt.jar’ file). The configuration file is in the
standard ‘ini file’ format with separate lines for each option, written as “setting=value”. Current options
are listed below:

Setting Explanation

DefaultArch Used as a default architecture if there is no “-arch”
parameter provided to ADT.

Values may be ‘armv8’, ‘armv8’, ‘x86’ or ‘x64’.

OverrideArch Used where an architecture value is being provided to ADT
using the ‘-arch’ parameter, this configuration setting will
override such parameter with the value given here.

Values may be ‘armv8’, ‘armv8’, ‘x86’ or ‘x64’.

DebugOut If set to “true”, results in additional output being generated
into a local file which can aid in debugging problems within
ADT (including the use of third party tools from the Android
SDK).

Values may be ‘true’ or ‘false’, default is ‘false’.

UncompressedExtensions A comma-separated list of file extensions that should not
be compressed when such files are found in the list of
assets to be packaged into the APK file.

For example: “UncompressedExtensions=jpg,wav”

AddAirToAppID Configures whether or not the “air.” prefix is added to an
application’s ID when it is packaged into the APK.

Values may be ‘true’ or ‘false’, default is ‘true’.

JavaXmx Adjusts the maximum heap size available to the Java
processes used when packaging Android apps (dx/d8, and
javac).

Default value is 1024m although this is automatically
overridden by any environment variable or value passed to
the originating application. If this config setting is present,
e.g. ‘2048m’, then it takes priority over all other
mechanisms.

CreateAndroidAppBundle Overrides any usage of ADT with an APK target type, and
instead generates an Android App Bundle. Note that the
output filename is not adjusted so this may result in
generation of a file with “.apk” extension even though it
contains an App Bundle.

Values may be ‘true’ or ‘false’, default is ‘false’.

Public 17(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

KeepAndroidStudioOutput When generating an Android App Bundle, rather than
using a temporary folder structure and cleaning this up,
this option will generate the Android Studio file structure
under the current folder and will leave this in place).

Values may be ‘true’ or ‘false’, default is ‘false’.

AndroidPlatformSDK A path to the Android SDK, that can be used instead of the
“-platformsdk” command line parameter. Note that on
Windows, the path should contain either double-
backslashes (“c:\\folder”) or forwardslashes (“c:/folder”).

iOSPlatformSDK A path to the iOS/iPhone/iPhoneSimulator SDK, that can
be used instead of the “-platformsdk” command line
parameter.

JAVA_HOME This can be set as an override or alternative to the system
environment variable that is read when ADT needs to use
Java (e.g. when creating an Android App Bundle). Note
that on Windows, the path should contain either double-
backslashes (“c:\\folder”) or forwardslashes (“c:/folder”).

UseNativeCodesign On macOS, this will mean that the IPA binary is signed
using the “codesign” process rather than using internal
Java sun security classes within ADT. This is “false” by
default, unless ADT detects that the sun security Java
classes are not available.

SignSwiftFiles By default, any swift libraries that are included in an IPA
payload are signed in the normal way. This can be turned
off by setting this value to “false”.

OnlyIncludeSwiftUsedArchsInSupport If this is set to “true” then for ipa-app-store builds that
include a “SwiftSupport” folder, the swift libraries will be
updated via lipo to only include architectures that are used
by the application (e.g. armv7 and arm64, omitting armv7s
and arm64e).

OnlyIncludeSwiftUsedArchsInPayload This is similar to the above flag but applies to the versions
of the swift libraries that are included in the “Payload”
folder within the IPA package. This (and the above) are
now defaulting to “false” so that the swift libraries are just
copied into position, but to get the legacy behaviour this
should be set to “true”.

iosSimulator The name of a simulator to use when installing or running
an IPA file on an iPhone simulator on mac. Note that this
value will be overridden by any command-line option or by
an environment variable should this be set as well (i.e.
AIR_IOS_SIMULATOR_DEVICE).

Public 18(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

5 Android builds
5.1 AAB Target

Google introduced a new format for packaging up the necessary files and resources for an application
intended for uploading to the Play Store, called the Android App Bundle. Information on this can be
found at https://developer.android.com/guide/app-bundle

AIR now supports the App Bundle by creating an Android Studio project folder structure and using
Gradle to build this. It requires an Android SDK to be present and for the path to this to be passed in
to ADT via the “-platformsdk” option (or set via a config file – it also checks in the default SDK
download location). It also needs to have a JDK present and available, and will attempt to find this
either from configuration files or via the JAVA_HOME environment variable (or if there is an Android
Studio installation present in the default location, using the JDK provided by that).

To generate an Android App Bundle file, the ADT syntax is similar to the “apk” usage:

adt -package -target aab <signing options> output.aab <app descriptor and files> [-extdir
<folder>] -platformsdk <path_to_android_sdk>

No “-arch” option can be provided, as the tool will automatically include all of the architecture types.
Signing options are optional for an App Bundle.

Note that the creation of an Android App Bundle involves a few steps and can take significantly longer
than creating an APK file. We recommend that APK generation is still used during development and
testing, and the AAB output can be used when packaging up an application for upload to the Play
Store.

ADT allows an AAB file to be installed onto a handset using the “-installApp” command, which
wraps up the necessary bundletool commands that generate an APKS file (that contains a set of APK
files suitable for a particular device) and then installs it. If developers want to do this manually,
instructions for this are available at https://developer.android.com/studio/command-
line/bundletool#deploy_with_bundletool, essentially the below lines can be used:

java -jar bundletool.jar build-apks --bundle output.aab --output output.apks --connected-
device

java -jar bundletool.jar install-apks --apks=output.apks

Note that the APK generation here will use a default/debug keystore; additional command-line
parameters can be used if the output APK needs to be signed with a particular certificate.

5.2 Play Asset Delivery

As part of an App Bundle, developers can create ”asset packs” that are delivered to devices
separately from the main application, via the Play Store. For information on these, please refer to the
below link:

https://developer.android.com/guide/playcore/asset-delivery

In order to create asset packs, the application XML file needs to be modified within the <android>
section, to list the asset packs and their delivery mechanism, and to tell ADT which of the files/folders
being packaged should be put into which asset pack.

For example:
<assetPacks>

https://developer.android.com/guide/app-bundle
https://developer.android.com/studio/command-line/bundletool#deploy_with_bundletool
https://developer.android.com/studio/command-line/bundletool#deploy_with_bundletool
https://developer.android.com/guide/playcore/asset-delivery

Public 19(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

 <assetPack id="ImageAssetPack" delivery="on-demand"
folder="AP_Images"/>

</assetPacks>

This instruction would mean that any file found in the ”AP_Images” folder would be redirected into an
asset pack with a name ”ImageAssetPack”. The delivery mechanisms can be ”on-demand”, ”fast-
follow” or ”install-time” per the Android specifications.

Note that assets should be placed directly into the asset pack folder as required, rather than adding
an additional ”src/main/assets” folder structure that the Android documentation requires. This folder
structure is created automatically by ADT during the creation of the Android App Bundle.

The asset pack folder needs to be provided as a normal part of the command line for the files that
should be included in a package. So for example if the asset pack folder was ”AP_Images” and this
was located in the root folder of your project, the command line would be:
adt -package -target aab MyBundle.aab application.xml MyApp.swf AP_Images
[then other files, -platformsdk directive, etc]

If there were a number of asset packs and all of the relevant folders were found under an
”AssetPacks” folder in the root of the project, the command line would be:
adt -package -target aab MyBundle.aab application.xml MyApp.swf -C
AssetsPacks . [then other files, -platformsdk directive, etc]

To access the asset packs via the Android Asset Pack Manager functionality, an ANE is available via
the AIR Package Manager tool. See https://github.com/airsdk/ANE-PlayAssetDelivery/wiki

5.3 Android Text Rendering

Previously, the rendering of text on Android had been handled via a native library built into the C++-
based AIR runtime file. This had some restrictions and issues with handling fonts, which caused major
problems with Android 12 when the font fallback mechanism was changed and the native code no
longer coped with this. To resovle this, a new text rendering mechanism has been implemented that
uses public Android APIs in order to set up the fonts and to render the text.

The new mechanism uses JNI to communicate between the AIR runtime and the Android graphics
classes for this, and has some differences with the legacy version. One of the changes that has been
made is to correct the display of non-colorized text elements when rendering to bitmap data: in earlier
builds, if some text included an emoji with a fixed color (e.g. ”flames” that are always yellow/orange
even if you request a green font color) then these characters appeared blue, due to the different pixel
formats used by Android vs the AIR BitmapData objects. With the new mechanism, AIR correctly
renders these characters to BitmapData (although the problem still remains when rendering device
text to a ’direct’ mode display list).

Some developers may not want to switch to this new mechanism yet, and others may want their
applications to always use it. Some would perhaps want it only when absolutely necessary i.e. from
Android 12 onwards. To cope with this request, there is a new application descriptor setting that can
be used: ”<newFontRenderingFromAPI>” which shoudl be placed within the <android> section of the
descriptor XML. The property of this can be used to set the API version on which the new rendering
mechanism takes place. The default value is API level 31 which corresponds to Android 12.0 (see
https://source.android.com/setup/start/build-numbers). So for example if you always want devices to
use the new mechanism, you can add:

<newFontRenderingFromAPI>0</newFontRenderingFromAPI>

whereas if you never want devices to use this, you could add:
<newFontRenderingFromAPI>99999</newFontRenderingFromAPI>

https://github.com/airsdk/ANE-PlayAssetDelivery/wiki
https://source.android.com/setup/start/build-numbers

Public 20(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

5.4 Android File System Access

In the earlier versions of Android, it was possible to use the filesystem in a similar way to a Linux
computer, but with a set of restrictions that had a fairly high-level granularity:

- It was possible to read/write to an application’s private storage location. AIR exposes this via
”File.applicationStorageDirectory”.

- If the app requested the ’read/write storage’ permission, the app could then read and write in
the user’s shared storage location and to removable storage. The main home folder was
accessible via ”File.userDirectory” or ”File.documentsDirectory”, and later AIR
33.1 added ”File.applicationRemovableStorageDirectory”.

- Later, this was updated such that the user had to also grant permission via a system pop-up
message. To trigger this pop-up, AIR developers could use ”File.requestPermission()”

With the introduction of “scoped storage” however, a lot of this has changed. Android files are treated
in a similar way to other resources, with URLs using the “content://” schema which can refer either to
filesystem-backed files, or to transient resources, or elements within other storage mechanisms such
as databases and libraries. Permission to access each resource depends upon the creator of that
resource, and by default it’s not possible for an application to open a file that another application had
created. Permissions for the top-level internal storage (i.e. “File.documentsDirectory”) have
been changed so that applications cannot create entries here but must use sub-folders of these (a set
of standard sub-folders is generally created by the OS).

Within AIR, we have been attempting to add support for the “content://” URIs, and to switch the File
class “browseForXXX” functions so that they use the new intent-based mechanisms for selecting
files to open and save, or to select a folder. Within these calls, we are also requesting the appropriate
read/write permissions (and persisting these so that they can be used in the future). This means that it
should be possible to call “browseForOpen()” and allow the user to select a shared file that can
then always be opened (for reading). Equally a “browseForDirectory()” call should mean that an
application then has read/write access into the selected directory and its sub-tree.

Requesting file system permissions has to be handled in a similar way, with permissions either
granted for a file or for a folder tree. The “File.requestPermission()” function therefore looks at
the native path of the File object this is called on, and decides whether to show a file open intent (if
there’s a normal path or URL in the nativePath property), or to show a folder selection intent (if the
path ends in a forward-slash), or whether to just ignore the call with a ‘granted’ response and then
wait for later permission requests for individual files (if the File object has not had a nativePath set).
This last option is intended to allow apps to work across different Android versions and is the
recommended option: early in the application lifecycle, create a new File and call
requestPermissions(): if the app is running on an earlier Android version, the permission pop-up
will appear, otherwise the app will need to request specific file access later on via the
“browseForXXX” functions or by requesting permission for a specific file. Sadly it isn’t possible to
ensure that the user only gives a yes/no response for these file/folder open intents, they are able to
browse for other files, so it may be that the file the user selects is not the one you are trying to open. If
this is detected, the permission status event will show as ‘denied’, so if you are happy for the user to
choose a different file, use “browseForOpen()” rather than “requestPermission()”.

There is an exception to having to use scoped storage and the storage access framework, which is if
an application has the “MANAGE_EXTERNAL_FILES” permission. This permission is intended for
utilities such as file manager apps and anti-virus scanners that have a legitimate need to access all
the (shared storage) files on the device, but if an app requests this permission and is submitted to the
Play Store, but doesn’t justify itself, then the submission is likely to be rejected.

Some applications are not distributed via the Play Store though, at which point this permission can be
used to turn the behaviour back to how it used to be in earlier Android versions. The

Public 21(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

“File.requestPermission()” capability has been overridden in the cases where AIR detects this
permission has been requested in the manifest, and it will now display the appropriate dialog to ask
the user to turn on the ‘all files’ access for this app. Once this has been granted (asynchronously), it
would then be possible to create, read and write files and folders including in the root storage device.

Public 22(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

6 Windows builds
The SDK now includes support for Windows platforms, 32-bit and 64-bit. We recommend that
developers use the “bundle” option to create an output folder that contains the target application. This
needs to be packaged up using a third party installer mechanism, in order to provide something that
can be easily distributed to and installed by end users. HARMAN are looking at adapting the previous
AIR installer so that it would be possible for the AIR Developer Tool to perform this step, i.e. allowing
developers to create installation MSI files for Windows apps in a single step.

Instructions for creating bundle packages are at:

https://help.adobe.com/en_US/air/build/WSfffb011ac560372f709e16db131e43659b9-8000.html

Note that 64-bit applications can be created using the “-arch x64” command-line option, to be added
following the “-target bundle” option.

https://help.adobe.com/en_US/air/build/WSfffb011ac560372f709e16db131e43659b9-8000.html

Public 23(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

7 MacOS builds
MacOS builds are provided only as 64-bit versions. A limited shared runtime option is being prepared
so that existing AIR applications can be used on Catalina, but the expectation for new/updated
applications is to also use the “bundle” option to distribute the runtime along with the application, as
per the above Windows section.

Note that Adobe’s AIR 32 SDK can be used on Catalina if the SDK is taken out of ‘quarantine’ status.
For instructions please see an online guide such as:

https://www.soccertutor.com/tacticsmanager/Resolve-Adobe-AIR-Error-on-MacOS-Catalina.pdf

AIR SDK now supports MacOS Big Sur including on the new ARM-based M1 hardware: applications
will be generated with ‘universal binaries’ and most of the SDK tools are now likewise built as
universal apps.

https://www.soccertutor.com/tacticsmanager/Resolve-Adobe-AIR-Error-on-MacOS-Catalina.pdf

Public 24(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

8 iOS support
8.1 32-bit vs 64-bit

For deployment of AIR apps on iOS devices, the AIR Developer Tool will use the provided tools to
extract the ActionScript Byte Code from the SWF files, and compile this into machine code that is then
linked with the AIR runtime and embedded into the IPA file. The process of ahead-of-time compilation
depends upon a utility that has to run with the same processor address size as the target architecture:
hence to generate a 32-bit output file, it needs to run a 32-bit compilation process. This causes a
problem on MacOS Catalina where 32-bit binaries will not run.

Additionally, due to the generation of stub files from the iPhone SDK that are used in the linking
process – which are created in a similar, platform-specific way – it is not possible to create armv7-
based stub files when using Catalina or later. From release 33.1.1.620, the stub files are based on
iOS15 and are purely 64-bit. This means that no 32-bit IPAs can be generated, even when running on
older macOS versions or on Windows.

8.2 MacOS remote linking from Windows

Due to a number of updates from Apple around the mach-o linker, and the movement of symbols
between different component libraries, it has become increasingly problematic to link Apple binaries
on a Windows computer. Originally, Adobe had cross-compiled the “ld64” Apple linker, but without
support for the “TBD” format that Apple use for the iPhoneOS/AppleTVOS SDKs. To work around this
limitation, the AIR SDK includes “stub” binaries for the SDKs – but it is not then possible to support
the movement of symbols i.e. where a particular symbol is found in different frameworks for different
iOS versions.

Using LLVM’s linker, which supports the mach-o format, it was also found that Apple restrictions had
been preventing some applications from being published via the App Store due to a difference in how
symbols were found/stored, and the known/unsupported issues in LLVM meant that this is also not a
completely viable solution.

The solution that we will work with now is to use a mac machine to perform the link stage of the build
process. The rest of the development and build process can still occur on Windows but linking the AIR
application’s object files against the iPhone / AppleTV SDKs should be done on a mac.

There are two ways to achieve this: initially a manual mechanism to allow files to be pushed to a
macOS machine, linked via a script, and then the result copied back to the Windows machine where
the packaging command needs to be run again to pick up the binary. And with the release of 51.0.1
this is now possible to handle automatically within a single run of ADT, following some initial machine
configuration. Details on these two methods follow.

8.2.1 Manual copying and linking

There are a number of steps to the build process in this scenario.

1. Configure ADT to use a specific folder, into which all linker inputs will be placed.

To do this, edit the “adt.cfg” file (in your home folder under an “.airsdk” subfolder) and add a line:
“IPALinkFolder=c:/path/to/link/folder”. This must be the name of an existing folder, under
which subfolders will be created for each run of ADT. Note that you need to use forward-slashes, or
escaped backslashes (“\\”), due to how Java reads in property files.

2. Run your normal link command via ADT.

This will then generate a subfolder under your “IPALinkFolder” location, which contains a script file
and all the input files needed for the Apple linker.

Public 25(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

3. Copy this link folder to your macOS computer.

This can be done with SFTP/SCP or similar tools, or potentially you could have a network shared
folder set up.

4. On the macOS computer, run the linker.

Using a terminal window, you will first need to set an environment variable, “AIR_SDK_HOME”, and
then run the script that was generated by ADT. For example:

 export AIR_SDK_HOME=/Users/username/Downloads/AIR_SDK/AIRSDK_51.0.1

 ./linkerscript.sh

5. Copy the resulting file back onto the Windows PC.

The file should be called “linkerOutput” and should be an arm64 macho executable file.

6. Call ADT again, this time providing the linked file.

To do this, add the arguments “-use-linker-output path_to_linkerOutput”; this can go
within the normal input files list, or at the end of this (similar to “-extdir”).

ADT will then ignore the normal command to link the binary, and will use the provided executable in
order to package and sign the IPA file.

7. Clean up.

The folder that’s created under the “IPALinkFolder” location, as well as the linkerOutput file (and of
course the files that have been copied to the macOS machine) are not automatically deleted. So
these should be periodically cleaned up manually to avoid wasting disk space.

8.2.2 Programmatic remote linking

In order to automatically allow the Windows machine to connect to the macOS machine and to copy
files and drive the linker, a password-less mechanism will need to be set up to allow remote access
without any user interaction. This requires the use of SSH keys: unless a key-pair is created that
doesn’t have a passphrase, it will be necessary to use “ssh-agent” to store the passphrase and
associate this with the user’s Windows credentials.

To set this up (one time only):

1. Create a new key-pair (unless you want to use an existing pair).

On Windows, run “ssh-keygen” and provide a filename – the default is “id_rsa” but in this
walkthrough we shall use “adt_access”. It then prompts for a passphrase: if you leave this blank, you
will not need to follow the “ssh agent” steps below, but the recommendation would be to create a
suitably secure passphrase for this. You should then have two files, “adt_access” and
“adt_access.pub”.

2. Install the public key on the mac machine.

You can use sftp/scp for this. The key should be added into your “.ssh” folder – note that you need the
username of the mac machine, which we shall assume is just “user”. You will then need to configure
SSH to allow this public key to be used for connections: if you remote in (or just open a terminal) on
the mac, go into the “.ssh” folder, and run: “cat adt_access.pub >> authorized_keys”. This
adds the new key onto the end of the authorized keys list.

3. Set up ssh agent to provide the passphrase.

Firstly you will need to check that ssh-agent is running: open “Services” on the computer, and find an
entry with name “OpenSSH Authentication Agent”. This should be changed to “Automatic”, or
“Automatic (Delayed Start)” if you prefer, and if necessary, also started manually. The “Status” column
should show that this is running.

Public 26(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

Then in a Windows console, run “ssh-add adt_access” and provide your passphrase.

Note that if you get an error message “Permissions for 'private-key.ppk' are too open”, you will need to
ensure that only the current user is able to access the private key file (“adt_access”). This means
adjusting the “Security” properties on this file, changing the owner of the file to the current local user
account, removing inheritance and inherited permissions, and removing all permissions for
users/groups other than the current local user. For more details, see the below link:

Windows SSH: Permissions for 'private-key' are too open - Super User

You can then test the connection by running “ssh -i adt_access user@mac_ip_address”,
which should then log on automatically without further prompting.

4. Provide the configuration to ADT.

 Now that you have the connectivity set up, you need to create a configuration file for AIR. You will
need to add two entries into the “adt.cfg” file that is in your “c:\users\username\.airsdk\” folder:
IPALinkFolder=c:/path/to/link/folder

RemoteLinkMachine=mac_ip_address

The first setting is to provide a location into which the linker will output all of the files. This is not
strictly necessary but will aid in debugging problems.

The second provides the network location of the remote machine onto which you’ve put the public ssh
key.

You will then need to create a configuration file with the name of this “mac_ip_address” network
address, with an “.cfg” extension, and put this into a subfolder “remote_link_configs” under the .airsdk
directory. For example:
C:\Users\username\.airsdk\remote_link_configs\192.168.1.3.cfg

The contents of this file should be:
CertPath=C:/path/to/private/key/adt_access

Username=user

SdkFolder=/Users/user/Documents/AIR_SDKs/AIRSDK_51.0.1

The “CertPath” value points to the private key that we’ve named “adt_access”, again please note the
use of forward-slashes or double-backslashes in the Windows path. “Username” is the user
associated with the key from when this was added to “authorized_keys”. And “SdkFolder” is the path
on the remote mac machine where an AIR SDK can be found. This path is only used for the runtime
libraries i.e. “libRuntimeHMAOT.arm-air.a” and “builtin_abc.arm64-air.o”, the linker won’t use this for
the actual link binary (ld64) or the stub files; instead, the remote script picks up your iPhoneOS SDK
using the “xcrun” utility.

Once that is all set up, you can use ADT as normal for IPA builds, and the remote linking will happen
in the background. If there are issues, please check the adt.log (or use AIR SDK Manager’s
“Troubleshooting” tab) and report an issue via Github.

Please do note that the link folders are not (currently) cleaned up with this approach, so the location
under the “IPALinkFolder”, and its copy that is pushed to the remote Mac device (with the same
name, within the user’s home folder) will still exist after the ADT process has completed. This will help
with debugging any issues, but we expect to change this in the future.

https://superuser.com/questions/1296024/windows-ssh-permissions-for-private-key-are-too-open

Public 27(27)
ADOBE AIR SDK RELEASE NOTES Version 51.1.2.2

Copyright © 2024 HARMAN Connected Services
All rights reserved.

Document Id: HCS19-000287

9 Splash Screens
For our ‘free tier’ users, a splash screen is injected into the start-up of the AIR process, displaying the
HARMAN and AIR logos for around 2 seconds whilst the start-up continues in the background. There
are different mechanisms used for this on different platforms, the current systems are described
below.

9.1 Desktop (Windows/macOS)

Splash screens are displayed in a separate window centred on the main display, while the start-up
continues behind these. The processing of ActionScript is delayed until after the splash screen has
been removed.

9.2 Android

The splash screen is displayed during start-up and happens immediately the runtime library has been
loaded. After a slight delay the initial SWF file is loaded in and when processing for this starts, the
splash screen is removed.

9.3 iOS

The splash screen is implemented as a launch storyboard with the binary storyboard and related
assets included in the SDK. This has implications for those who are providing their own storyboards or
images in an Assets.car file:

- If you are on the ‘free tier’ then the AIR developer tool will ignore any launch storyboard you
have specified within your application descriptor file, or provided within the file set for
packaging into the IPA file.

- If you are creating an Assets.car file, then you need to add in the AIR splash images from the
SDK which are in the “lib/aot/res” folder. These should be copied and pasted into your
“.xcassets” folder in the Xcode project that you are using for creation of your assets.

Troubleshooting:

Message from ADT: “Warning: free tier version of AIR SDK will use the HARMAN launch
storyboard” – this will be displayed if a <UILaunchStoryboardName> tag has been added via the
AIR application descriptor file. The tag will be ignored and the Storyboard from the SDK will be used
instead.

Message from ADT: “Warning: removing user-included storyboard "[name]"” will be displayed
if there was a Storyboardc file that had been included in the list of files to package: this will be
removed.

Message from ADT: "Warning: free tier version of AIR SDK must use the HARMAN launch
storyboard" – this will be displayed if the Storyboardc file in the SDK has been replaced by a user-
generated one.

If a white screen is shown during start-up: check that the HARMAN splash images are included in
your assets.car file. Note that the runtime may shut down if it doesn’t detect the appropriate splash
images.

The runtime may also shut down for customers with a commercial license if a storyboard has been
specified within the AIR descriptor file but not added via the list of files to package into the IPA file.

